Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression.

“Pharmacological inhibition of beta-amyloid (Aβ) induced reactive gliosis may represent a novel rationale to develop drugs able to blunt neuronal damage and slow the course of Alzheimer’s disease (AD). Cannabidiol (CBD), the main non-psychotropic natural cannabinoid, exerts in vitro a combination of neuroprotective effects in different models of Aβ neurotoxicity. The present study, performed in a mouse model of AD-related neuroinflammation, was aimed at confirming in vivo the previously reported antiinflammatory properties of CBD.

Cannabidiol (CBD), the main non-psychotropic component of the glandular hairs of Cannabis sativa, exhibits a plethora of actions including anti-convulsive, sedative, hypnotic, anti-psychotic, anti-nausea, anti-inflammatory and anti-hyperalgesic properties. CBD has been proved to exert in vitro a combination of neuroprotective effects in Aβ-induced neurotoxicity, including anti-oxidant and anti-apoptotic effects, tau protein hyperphosphorylation inhibition through the Wnt pathway, and marked decrease of inducible nitric oxide synthase (iNOS) protein expression and nitrite production in Aβ-challenged differentiated rat neuronal cells.

In spite of the large amount of data describing the significant neuroprotective and anti-inflammatory properties of CBD in vitro, to date no evidence has been provided showing similar effects in vivo. To achieve this, the present study investigated the potential anti-inflammatory effect of CBD in a mouse model of AD-related neuroinflammation induced by the intrahippocampal injection of the human Aβ (1–42) fragment.

The results of the present study confirm in vivo anti-inflammatory actions of CBD, emphasizing the importance of this compound as a novel promising pharmacological tool capable of attenuating Aβ evoked neuroinflammatory responses.

 …on the basis of the present results, CBD, a drug well tolerated in humans, may be regarded as an attractive medical alternative for the treatment of AD, because of its lack of psychoactive and cognitive effects.”

Read more: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189818/

 

The role of phytochemicals in the treatment and prevention of dementia.

Drugs & Aging

“Dementia pathologies such as Alzheimer’s disease (AD) are reaching epidemic proportions, yet they are not successfully managed by effective symptomatic treatments. Only five drugs have been developed to alleviate cognitive symptoms, and more effective and safe treatments are needed for both the cognitive symptoms and behavioural and psychological symptoms of dementia (BPSD). As two of these licensed drugs (cholinesterase inhibitors [ChEIs]) are naturally derived (galantamine and rivastigmine), the potential for plants to yield new therapeutic agents has stimulated extensive research to discover new ChEIs together with plant extracts, phytochemicals and their derivatives with other mechanistic effects relevant to dementia treatment. This review presents the potential and actual therapeutic strategies for dementia in relation to the known mechanisms of dementia pathology. Phytochemicals that have shown mechanistic effects relevant to the pathological targets in dementia are discussed, with an emphasis on those showing positive clinical trial evidence. Those phytochemicals discussed include the alkaloid physostigmine, a ChEI from the calabar bean (Physostigma venenosum), which has been used as a template for the development of synthetic derivatives that inhibit acetylcholinesterase, including the drug rivastigmine. Also discussed are other ChEI alkaloids including huperzine A, from Huperzia serrata, and galantamine, originally from the snowdrop (Galanthus woronowii); both alkaloids improve cognitive functions in AD patients.

Other phytochemicals discussed include cannabinoids (e.g. cannabidiol) from Cannabis sativa, which are emerging as potential therapeutic agents for BPSD, and resveratrol (occurs in various plants) and curcumin (from turmeric [Curcuma longa]), which have been investigated for their pharmacological activities relevant to dementia and their potential effects on delaying dementia progression. The review also discusses plant extracts, and their known constituents, that have shown relevant mechanistic effects for dementia and promising clinical data, but require more evidence for their clinical efficacy and safety. Such plants include Ginkgo biloba, which has been extensively studied in numerous clinical trials, with most outcomes showing positive effects on cognitive functions in dementia patients; however, more reliable and consistent clinical data are needed to confirm efficacy. Other plants and their extracts that have produced promising clinical data in dementia patients, with respect to cognition, include saffron (Crocus sativus), ginseng (Panax species), sage (Salvia species) and lemon balm (Melissa officinalis), although more extensive and reliable clinical data are required. Other plants that are used in traditional practices of medicine have been suggested to improve cognitive functions (e.g. Polygala tenuifolia) or have been associated with alleviation of BPSD (e.g. the traditional prescription yokukansan); such remedies are often prescribed as complex mixtures of different plants, which complicates interpretation of pharmacological and clinical data and introduces additional challenges for quality control. Evidence for the role of natural products in disease prevention, the primary but considerably challenging aim with respect to dementia, is limited, but the available epidemiological and clinical evidence is discussed, with most studies focused on ChEIs, nicotine (from Nicotiana species), curcumin, wine polyphenols such as resveratrol and G. biloba. Challenges for the development of phytochemicals as drugs and for quality control of standardized plant extracts are also considered.”

http://www.ncbi.nlm.nih.gov/pubmed/21639405

https://link.springer.com/article/10.2165%2F11591310-000000000-00000

Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease.

“Microglial activation is an invariant feature of Alzheimer’s disease (AD). It is noteworthy that cannabinoids are neuroprotective by preventing β-amyloid (Aβ)-induced microglial activation both in vitro and in vivo… the phytocannabinoid cannabidiol (CBD) has shown anti-inflammatory properties in different paradigms…

Cannabinoids, whether plant-derived, synthetic, or endocannabinoids, exert their functions through activation of cannabinoid receptors, two of which have been well characterized to date: CB1 and CB2. Cannabinoids are neuroprotective against excitotoxicity and acute brain damage, both in vitro and in vivo. Several mechanisms account for the neuroprotection afforded by this type of drug such as blockade of excitotoxicity, reduction of calcium influx, antioxidant properties of the compounds, or enhanced trophic factor support. A decrease in proinflammatory mediators brought about by cannabinoids may be also involved in their neuroprotection… Cannabidiol (CBD), the major plant-derived nonpsychotropic constituent of marijuana, is of potential therapeutic interest in different disease conditions (e.g., inflammation)…

…this kind of drug with neuroprotective and anti-inflammatory effects may be of interest in the prevention of AD inflammation, in particular CB2-selective agonists, which are devoid of psychoactive effects…

Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo…

CBD is able to modulate microglial cell function in vitro and induce beneficial effects in an in vivo model of AD.

Given that CBD lacks psychoactivity, it may represent a novel therapeutic approach for this neurological disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102548/

Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Δ9-tetrahydrocannabinol in BV-2 microglial cells.

“Apart from their effects on mood and reward, cannabinoids exert beneficial actions such as neuroprotection and attenuation of inflammation. The immunosuppressive activity of cannabinoids has been well established. We previously showed that the psychoactive cannabinoid Δ(9) -tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol (CBD) differ in their anti-inflammatory signalling pathways.

CONCLUSIONS AND IMPLICATIONS:

These observations indicated that CBD, but much less than THC, induced a cellular stress response in microglial cells and suggested that this effect could underlie its anti-inflammatory activity.”

http://www.ncbi.nlm.nih.gov/pubmed/21542829

Cannabinoids Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Inhibit the Lipopolysaccharide-activated NF-κB and Interferon-β/STAT Proinflammatory Pathways in BV-2 Microglial Cells

“Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. Δ9-Tetrahydrocannabinol (THC)is a major constituent of Cannabis and serves as an agonist of the cannabinoid receptors CB1 and CB2.

The second major constituent of Cannabis extract is cannabidiol (CBD). CBD lacks the psychoactive effects that accompany the use of THC. Moreover, CBD was demonstrated to antagonize some undesirable effects of THC, including intoxication, sedation, and tachycardia, while sharing neuroprotective, anti-oxidative, anti-emetic, and anti-carcinogenic properties. Both THC and CBD have been shown to exert anti-inflammatory properties and to modulate the function of immune cells…

In summary, our results show that although both THC and CBD exert anti-inflammatory effects, the two compounds engage different, although to some extent overlapping, intracellular pathways. Both THC and CBD decrease the activation of proinflammatory signaling…

 The cannabinoids by moderating or disrupting these signaling networks may show promise as anti-inflammatory agents.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804319/

Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro.

“Cannabinoids have been widely reported to have neuroprotective properties in vitro and in vivo. In this study we compared the effects of CB1 and CB2 receptor-selective ligands, the endocannabinoid anandamide and the phytocannabinoid cannabidiol, against oxidative stress and the toxic hallmark Alzheimer’s protein, β-amyloid (Aβ)…

 …the endocannabinoid anandamide protects neuronal cells from Aβ exposure via a pathway unrelated to CB1 or CB2 receptor activation…protective effect of cannabidiol against oxidative stress…

…divergent pathways for neuroprotection of these two cannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/22233683

Nonpsychoactive Cannabidiol Prevents Prion Accumulation and Protects Neurons against Prion Toxicity

“Creutzfeldt–Jakob disease (CJD) in humans belongs to a group of fatal neurodegenerative disorders called transmissible spongiform encephalopathies (TSEs) or prion diseases. No therapeutic treatments against TSEs are currently available. The urgent need to find effective anti-prion therapies has been strengthened by the emergence of variant CJD (vCJD) caused by contaminated beef consumption …

Our results suggest that CBD may protect neurons against the multiple molecular and cellular factors involved in the different steps of the neurodegenerative process, which takes place during prion infection. When combined with its ability to target the brain and its lack of toxic side effects, CBD may represent a promising new anti-prion drug.

Overall, CBD is a promising therapeutic drug against the TSEs because it combines several crucial characteristics. It has a low toxicity and lack of psychotropic side effects as well as in vivo neuroprotective, anti-inflammatory, and anti-PrPres properties. Because CBD easily crosses the BBB, it also has the potential to be effective after prion infection has reached the CNS. Finally, prolonged treatments with CBD do not induce tolerance, a phenomenon frequently observed with THC. Additional investigations should be performed to define the optimal dose, route, frequency, and duration of the in vivo CBD treatment necessary to prevent TSE infection…”

http://www.jneurosci.org/content/27/36/9537.full

The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells.

“Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder. A massive accumulation of beta-amyloid (Abeta) peptide aggregates has been proposed as pivotal event in AD. Abeta-induced toxicity is accompanied by a variegated combination of events including oxidative stress… Cannabidiol, a non-psychoactive marijuana component, has been recently proposed as an antioxidant neuroprotective agent in neurodegenerative diseases. Moreover, it has been shown to rescue PC12 cells from toxicity induced by Abeta peptide. Here, we report that cannabidiol inhibits hyperphosphorylation of tau protein in Abeta-stimulated PC12 neuronal cells, which is one of the most representative hallmarks in AD… These results provide new molecular insight regarding the neuroprotective effect of cannabidiol and suggest its possible role in the pharmacological management of AD, especially in view of its low toxicity in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/16389547

 

Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement.

“In view of the pro-inflammatory scenario observed in Alzheimer’s disease, in the recent years anti-inflammatory drugs have been proposed as potential therapeutic agents. We have previously shown that cannabidiol, the main non-psychotropic component from Cannabis sativa, possess a variegate combination of anti-oxidant and anti-apoptotic effects that protect PC12 cells from Abeta toxicity. In parallel, cannabidiol has been described to have anti-inflammatory properties in acute models of inflammation …

The here reported data increases our knowledge about the possible neuroprotective mechanism of cannabidiol, highlighting the importance of this compound to inhibit beta-amyloid induced neurodegeneration, in view of its low toxicity in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/16490313

The therapeutic potential of the endocannabinoid system for Alzheimer’s disease.

“Based on the complex pathology of AD, a preventative, multimodal drug approach targeting a combination of pathological AD symptoms appears ideal. Importantly, cannabinoids show anti-inflammatory, neuroprotective and antioxidant properties and have immunosuppressive effects. Thus, the cannabinoid system should be a prime target for AD therapy. The cannabinoid receptor 2 appears to be a promising candidate but its role in AD has to be investigated cautiously. Furthermore, the phytocannabinoid cannabidiol is of particular interest as it lacks the psychoactive and cognition-impairing properties of other cannabinoids. In conclusion, future research should focus on the evaluation of the effects of manipulations to the endocannabinoid system in established animal models for AD, combined with early-phase studies in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/22448595