Endocannabinoids Have Opposing Effects On Behavioral Responses To Nociceptive And Non-nociceptive Stimuli.

“The endocannabinoid system is thought to modulate nociceptive signaling making it a potential therapeutic target for treating pain.

However, there is evidence that endocannabinoids have both pro- and anti-nociceptive effects. In previous studies using Hirudo verbana (the medicinal leech), endocannabinoids were found to depress nociceptive synapses, but enhance non-nociceptive synapses. Here we examined whether endocannabinoids have similar bidirectional effects on behavioral responses to nociceptive vs. non-nociceptive stimuli in vivo.

These results provide evidence that endocannabinoids can have opposing effects on nociceptive vs. non-nociceptive pathways and suggest that cannabinoid-based therapies may be more appropriate for treating pain disorders in which hyperalgesia and not allodynia is the primary symptom.”

Delta-9-tetrahydrocannabinol decreases masticatory muscle sensitization in female rats through peripheral cannabinoid receptor activation.

European Journal of Pain

“This study investigated whether intramuscular injection of delta-9-tetrahydrocannabinol (THC), by acting on peripheral cannabinoid (CB) receptors, could decrease nerve growth factor (NGF)-induced sensitization in female rat masseter muscle; a model which mimics the symptoms of myofascial temporomandibular disorders.

It was found that CB1 and CB2 receptors are expressed by trigeminal ganglion neurons that innervate the masseter muscle and also on their peripheral endings.

These results suggest that reduced inhibitory input from the peripheral cannabinoid system may contribute to NGF-induced local myofascial sensitization of mechanoreceptors. Peripheral application of THC may counter this effect by activating the CB1 receptors on masseter muscle mechanoreceptors to provide analgesic relief without central side effects.

SIGNIFICANCE:

Our results suggest THC could reduce masticatory muscle pain through activating peripheral CB1 receptors. Peripheral application of cannabinoids could be a novel approach to provide analgesic relief without central side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/28722246

http://onlinelibrary.wiley.com/doi/10.1002/ejp.1085/abstract

The synthetic cannabinoid WIN55212-2 ameliorates traumatic spinal cord injury via inhibition of GAPDH/Siah1 in a CB2-receptor dependent manner.

Image result for brain research journal

“The essential role of GAPDH/Siah1 signaling pathway in the pathogenesis of various injurious conditions such as traumatic spinal cord injury (SCI) has been gradually recognized. However, the drugs targeting this signaling pathway are still lacking.

The endocannabinoid system, including its receptors (CB1 and CB2), act as neuroprotective and immunomodulatory modulators in SCI. WIN55212-2, an agonist for CB1 and CB2 receptors, has been demonstrated with anti-inflammatory and anti-apoptotic effects in multiple neurological diseases. Therefore, the present study aimed to investigate whether WIN55212-2 could promote functional recovery after traumatic SCI via inhibition of the GAPDH/Siah1 signaling.

In conclusion, our study indicates that, WIN55212-2 improves the functional recovery after SCI via inhibition of GAPDH/Siah1 cascades in a CB2 receptor dependent manner, indicative of its therapeutic potential for traumatic SCI or other traumatic conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/28716633

An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol.

Image result for frontiers in pharmacology

“Cannabidiol (CBD) has been traditionally used in Cannabis-based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis. Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging.”  https://www.ncbi.nlm.nih.gov/pubmed/28701957

Engineering yeasts as platform organisms for cannabinoid biosynthesis.

Cover image

“Δ9-tetrahydrocannabinolic acid (THCA) is a plant derived secondary natural product from the plant Cannabis sativa l. The discovery of the human endocannabinoid system in the late 1980s resulted in a growing number of known physiological functions of both synthetic and plant derived cannabinoids. Thus, manifold therapeutic indications of cannabinoids currently comprise a significant area of research. Here we reconstituted the final biosynthetic cannabinoid pathway in yeasts. The use of the soluble prenyltransferase NphB from Streptomyces sp. strain CL190 enables the replacement of the native transmembrane prenyltransferase cannabigerolic acid synthase from C. sativa. In addition to the desired product cannabigerolic acid, NphB catalyzes an O-prenylation leading to 2-O-geranyl olivetolic acid. We show for the first time that the bacterial prenyltransferase and the final enzyme of the cannabinoid pathway tetrahydrocannabinolic acid synthase can both be actively expressed in the yeasts Saccharomyces cerevisiae and Komagataella phaffii simultaneously. While enzyme activities in S. cerevisiae were insufficient to produce THCA from olivetolic acid and geranyl diphosphate, genomic multi-copy integrations of the enzyme’s coding sequences in K. phaffii resulted in successful synthesis of THCA from olivetolic acid and geranyl diphosphate. This study is an important step toward total biosynthesis of valuable cannabinoids and derivatives and demonstrates the potential for developing a sustainable and secure yeast bio-manufacturing platform.” https://www.ncbi.nlm.nih.gov/pubmed/28694184  http://www.sciencedirect.com/science/article/pii/S0168165617315201

“Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis sativa L.” https://www.ncbi.nlm.nih.gov/pubmed/25994576

“Scientists Engineer Yeast to Produce Active Marijuana Compound, THC”  https://www.sciencealert.com/scientists-engineer-yeast-to-produce-active-marijuana-compound-thc

Pharmaceutical and biomedical analysis of cannabinoids: A critical review

Cover image

“Cannabis products have recently regained much attention due to the high pharmacological potential of their cannabinoid content. In this review, the most widely used sample preparation strategies for the extraction of cannabinoids are described for the specific application to either plant materials or biological matrices. Several analytical techniques are described pointing out their respective advantages and drawbacks. In particular, chromatographic methods, such as TLC, GC and HPLC, are discussed and compared in terms of selectivity and sensitivity. Various detection methods are also presented based on the specific aim of the cannabinoids analysis. Lastly, critical considerations are mentioned with the aim to deliver useful suggestions for the selection of the optimal and most suitable method of analysis of cannabinoids in either biomedical or cannabis derived samples.” https://www.ncbi.nlm.nih.gov/pubmed/28641906   http://www.sciencedirect.com/science/article/pii/S0731708517311895

The case for cannabinoid CB1 receptors as a target for bronchodilator therapy for β-agonist resistant asthma.

Image result for Curr Drug Targets

“Although b2-receceptor agonists are powerful bronchodilators and are at the forefront of asthma symptom relief, patients who use them frequently develop partial resistance to them. This can be a particularly serious problem during severe attacks, where high dose b2-agonist treatment is the front line therapy.

Alternative bronchodilators are urgently needed. In this article we review the evidence for the bronchodilator effects of the cannabinoid CB1 receptor tetrahydrocannabinol (THC) and suggest that the mechanism of action for these effects are sufficiently independent of the mechanisms of standard bronchodilators to warrant clinical investigation.

Specifically, clinical trials testing the bronchodilator effects of THC in b2 agonist resistant asthmatic patients would show whether THC could fill the role of rescue bronchodilator in cases of b2 agonist resistance.”  https://www.ncbi.nlm.nih.gov/pubmed/28641517

The cannabinoid ligand LH-21 reduces anxiety and improves glucose handling in diet-induced obese pre-diabetic mice.

“LH-21 is a triazol derivative that has been described as a low-permeant neutral CB1 antagonist, though its pharmacology is still unclear. It has been associated with anti-obesity actions in obese rats. However, its role in preventing type 2 diabetes (T2D) onset have not been studied yet. Given CB1 receptors remain as potential pharmacological targets to fight against obesity and T2D, we wanted to explore the metabolic impact of this compound in an animal model of obesity and pre-diabetes as well as the lack of relevant actions in related central processes such as anxiety. These results suggest that LH-21 can be a new candidate to fight against diabetes onset. Indeed, this compound shows potential in counteracting obesity-related anxiety.” https://www.ncbi.nlm.nih.gov/pubmed/28638091   https://www.nature.com/articles/s41598-017-03292-w

“Anti-obesity efficacy of LH-21, a cannabinoid CB(1) receptor antagonist with poor brain penetration, in diet-induced obese rats.”  https://www.ncbi.nlm.nih.gov/pubmed/21951309

“Antiobesity effects of the novel in vivo neutral cannabinoid receptor antagonist 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole–LH 21.”  https://www.ncbi.nlm.nih.gov/pubmed/16750544

The cannabinoid system and pain.

Cover image

“Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28625720

http://www.sciencedirect.com/science/article/pii/S002839081730285X

Assessing the role of serotonergic receptors in cannabidiol’s anticonvulsant efficacy.

“Cannabidiol (CBD) is a phytocannabinoid that has demonstrated anticonvulsant efficacy in several animal models of seizure. The current experiment validated CBD’s anticonvulsant effect using the acute pentylenetetrazol (PTZ) model.

While this work further confirms the anticonvulsant efficacy of CBD and supports its application in the treatment of human seizure disorders, additional research on CBD’s mechanism of action must be conducted.”

https://www.ncbi.nlm.nih.gov/pubmed/28624721

http://www.epilepsybehavior.com/article/S1525-5050(17)30122-1/fulltext