Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury

Heart and Circulatory Physiology

“CANNABINOIDS ARE NATURAL and synthetic compounds structurally or pharmacologically related to the constituents of the plant Cannabis sativa or to the endogenous agonists (endocannabinoids) of the cannabinoid CB1 and CB2 receptors.

Cannabidiol (CBD) is a major cannabinoid constituent of Cannabis.

In contrast to tetrahydrocannabinol, CBD binds very weakly to CB1 and CB2 receptors. Contrary to most cannabinoids, CBD does not induce psychoactive or cognitive effects.

CBD has been shown to have anti-inflammatory properties. CBD (together with tetrahydrocannabinol) has been successfully tested in a few preliminary human trials related to autoimmune diseases…

Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling.

Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts.

Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo.

Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.”

http://ajpheart.physiology.org/content/293/6/H3602

Cannabinoid pharmacology in the cardiovascular system: potential protective mechanisms through lipid signalling.

“Cannabinoids include not only plant-derived compounds (of which delta9-tetrahydrocannabinol is the primary psychoactive ingredient of cannabis), but also synthetic agents and endogenous substances termed endocannabinoids which include anandamide (2-arachidonoylethanolamide) and 2-arachidonoylglycerol.

Cannabinoids act on specific, G-protein-coupled, receptors which are currently divided into two types, CB1 and CB2. Relatively selective agonists and antagonists for these receptors have been developed, although one agent (SR141716A) widely used as an antagonist at CB1 receptors has non-cannabinoid receptor-mediated effects at concentrations which are often used to define the presence of the CB1 receptor.

Both cannabinoid receptors are primarily coupled to Gi/o proteins and act to inhibit adenylyl cyclase. Stimulation of CB1 receptors also modulates the activity of K+ and Ca2+ channels and of protein kinase pathways including protein kinase B (Akt) which might mediate effects on apoptosis. CB, receptors may activate the extracellular signal-regulated kinase cascade through ceramide signalling.

Cannabinoid actions on the cardiovascular system have been widely interpreted as being mediated by CB1 receptors although there are a growing number of observations, particularly in isolated heart and blood vessel preparations, that suggest that other cannabinoid receptors may exist.

Interestingly, the currently identified cannabinoid receptors appear to be related to a wider family of lipid receptor, those for the lysophospholipids, which are also linked to Gi/o protein signalling.

Anandamide also activates vanilloid VR1 receptors on sensory nerves and releases the vasoactive peptide, calcitonin gene-related peptide (CGRP), which brings about vasodilatation through its action on CGRP receptors.

Current evidence suggests that endocannabinoids have important protective roles in pathophysiological conditions such as shock and myocardial infarction.

Therefore, their cardiovascular effects and the receptors mediating them are the subject of increasing investigative interest.”

http://www.ncbi.nlm.nih.gov/pubmed/15005177

Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model.

“This study was performed to investigate the effects of CBR agonists on skin inflammation, using acute and chronic inflammation animal models.

All of the results suggest that topical application of CB1R-specific agonist can be beneficial for alleviating the inflammatory symptoms in chronic skin diseases, including atopic dermatitis.”

http://www.ncbi.nlm.nih.gov/pubmed/26095080

Cannabidiol for the Prevention of Graft-Versus-Host-Disease after Allogeneic Hematopoietic Cell Transplantation: Results of a Phase II Study.

“Graft-versus-host-disease (GVHD) is a major obstacle to successful allogeneic hematopoietic cell transplantation (alloHCT).

Cannabidiol (CBD), a non-psychotropic ingredient of Cannabis sativa possesses potent anti-inflammatory and immunosuppressive properties. We hypothesized that CBD may decrease GVHD incidence and severity after alloHCT…

The combination of CBD with standard GVHD prophylaxis is a safe and promising strategy to reduce the incidence of acute GVHD. A randomized double blind controlled study is warranted.”

http://www.ncbi.nlm.nih.gov/pubmed/26033282

Δ9-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells.

“Immune cells have been shown to express cannabinoid receptors and to produce endogenous ligands. Moreover, activation of cannabinoid receptors on immune cells has been shown to trigger potent immunosuppression.

Despite such studies, the role of cannabinoids in transplantation, specifically to prevent allograft rejection, has not, to our knowledge, been investigated previously. In the current study, we tested the effect of THC on the suppression of HvGD as well as rejection of skin allografts…

Together, our research shows, for the first time to our knowledge, that targeting cannabinoid receptors may provide a novel treatment modality to attenuate HvGD and prevent allograft rejection.”

http://www.ncbi.nlm.nih.gov/pubmed/26034207

Association of the cannabinoid receptor gene (CNR1) with ADHD and post-traumatic stress disorder.

Logo of wtpa

“Attention deficit hyperactivity disorder (ADHD) is a highly heritable disorder affecting some 5-10% of children and 4-5% of adults. The cannabinoidreceptor gene (CNR1) is a positional candidate gene due to its location near an identified ADHD linkage peak on chromosome 6, its role in stress and dopamine regulation, its association with other psychiatric disorders that co-occur with ADHD, and its function in learning and memory.

…the CNR1 gene may be a risk factor forADHD and possibly PTSD, and that this gene warrants further investigation for a role in neuropsychiatric disorders.

These data provide support for a putative role of endogenous cannabinoids in ADHD, and PTSD.

The CNR1gene may contribute to shared underlying risk continua, such as emotional dysregulation in response to stress, across these diverse diagnostic groups. Increased amygdala activity, poor stress reactivity as reflected by HPA response, and poor prefrontal cortical modulation is a plausible underlying mechanism of liability that may be shared across disorders.

Taken together with the current findings, we suggest that this gene may be an important risk variant in the emotional regulation difficulties underlying ADHD, PTSD, and possibly other co-morbid conditions (such as mood disorder); however, the role of CNR1 is likely small, particularly at the level of psychiatric diagnosis, so future work using more refined phenotypes or endophenotypes of affect regulation are necessary.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685476/

Lipid nanoparticles as an emerging platform for cannabinoid delivery: physicochemical optimization and biocompatibility.

“This work aims at developing and optimizing a valuable oral delivery carrier for the cannabinoid derivative CB13, which presents a high therapeutic potential in chronic pain states that respond poorly to conventional analgesics, but also shows highly unfavorable physicochemical properties.

CB13-loaded lipid nanoparticles (LNP) formulations were developed…

The LNP formulation proposed proved to be a promising carrier for the oral delivery of CB13, a cannabinoid with high therapeutic potential in chronic pain states that currently lack a valid oral treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/25996463

A CB2-Selective Cannabinoid Suppresses T-Cell Activities and Increases Tregs and IL-10.

“We have previously shown that agonists selective for the cannabinoid receptor 2 (CB2), including O-1966, inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ graft rejection, predominantly through effects on T-cells. Current studies explored the mechanism of this immunosuppression by O-1966 using mouse spleen cells…

These data support the potential of CB2-selective agonists as useful therapeutic agents to prolong graft survival in transplant patients, and strengthens their potential as a new class of immunosuppressive agents with broader applicability.”

http://www.ncbi.nlm.nih.gov/pubmed/25980325

Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: critical role of p38 MAPK activation.

“Degenerative retinal diseases are characterized by inflammation and microglial activation.

The nonpsychoactive cannabinoid, cannabidiol (CBD), is an anti-inflammatory in models of diabetes and glaucoma.

We tested the hypothesis that retinal inflammation and microglia activation are initiated and sustained by oxidative stress and p38 mitogen-activated protein kinase (MAPK) activation, and that CBD reduces inflammation by blocking these processes…

Retinal inflammation and degeneration in uveitis are caused by oxidative stress.

CBD exerts anti-inflammatory and neuroprotective effects by a mechanism that involves blocking oxidative stress and activation of p38 MAPK and microglia.”

http://www.ncbi.nlm.nih.gov/pubmed/19052649