Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice.

“N-3 polyunsaturated fatty acids (PUFAs) cannot be synthesized de novo in mammals and need to be provided by dietary means. In the brain, the main n-3 PUFA is docosahexaenoic acid (DHA), which is a key component of neuronal membranes. A low dietary level of DHA has been associated with increased risk of developing neuropsychiatric diseases; however, the mechanisms involved remain to be determined.

In this study, we found that long-term exposure to an n-3 deficient diet decreases the level of DHA in the brain and impairs the cannabinoid receptor signaling pathway in mood-controlling structures.

In n-3 deficient mice, the effect of the cannabinoid agonist WIN55,212-2 in an anxiety-like behavior test was abolished. In addition, the cannabinoid receptor signaling pathways were altered in the prefrontal cortex and the hypothalamus.

Consequently, our data suggest that behavioral changes linked to an n-3 dietary deficiency are due to an alteration in the endocannabinoid system in specific brain areas.”

http://www.ncbi.nlm.nih.gov/pubmed/22707188

Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test.

“Cannabidiol (CBD) is a major constituent of the Cannabis sativa plant. It inhibits the anxiogenic activity of high doses of Delta9-tetrahydrocannabinol and induces anxiolytic-like effects. However, the mechanisms underlying the actions of CBD are unknown. Therefore, the aim of the present study was to test the effects of CBD in the Vogel test, a widely used animal model of anxiety. 

 In conclusion, CBD induced an anticonflict effect not mediated by benzodiazepine receptors or by non-specific drug interference on nociceptive threshold or water consumption.

These results reinforce the hypothesis that this cannabinoid has anxiolytic properties.”

http://www.ncbi.nlm.nih.gov/pubmed/16876926

Role in Anxiety Behavior of the Endocannabinoid System in the Prefrontal Cortex

“Increasing evidence that low doses of cannabinoid agonists reduce anxiety-like behaviors in mice and rats is being reported, thus suggesting an anxiolytic role for the endogenous cannabinoid signaling. In line with this hypothesis, pharmacological agents that enhance the endogenous cannabinoid signaling exert anxiolytic-like actions…

  These findings support an anxiolytic role for physiological increases in AEA in the PFC, whereas more marked increases or decreases of this endocannabinoid might lead to an anxiogenic response due to TRPV1 stimulation or the lack of CB1 activation, respectively.”

http://cercor.oxfordjournals.org/content/18/6/1292.long

Expression pattern of the cannabinoid receptor genes in the frontal cortex of mood disorder patients and mice selectively bred for high and low fear.

“Although the endocannabinoid system (ECS) has been implicated in brain development and various psychiatric disorders, precise mechanisms of the ECS on mood and anxiety disorders remain unclear. Here, we have investigated developmental and disease-related expression pattern of the cannabinoid receptor 1 (CB1) and the cannabinoid receptor 2 (CB2) genes in the dorsolateral prefrontal cortex (PFC) of humans. Using mice selectively bred for high and low fear, we further investigated potential association between fear memory and the cannabinoid receptor expression in the brain…

 These results suggest that the CB1 in the PFC may play a significant role in regulating mood and anxiety symptoms. Our study demonstrates the advantage of utilizing data from postmortem brain tissue and a mouse model of fear to enhance our understanding of the role of the cannabinoid receptors in mood and anxiety disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/22534181

Cannabidiol: an overview of some chemical and pharmacological aspects. Part I: chemical aspects.

“Over the last few years considerable attention has focused on cannabidiol (CBD), a major non-psychotropic constituent of Cannabis. In Part I of this review we present a condensed survey of the chemistry of CBD; in Part II, to be published later, we shall discuss the anti-convulsive, anti-anxiety, anti-psychotic, anti-nausea and anti-rheumatoid arthritic properties of CBD. CBD does not bind to the known cannabinoid receptors and its mechanism of action is yet unknown. In Part II we shall also present evidence that it is conceivable that, in part at least, its effects are due to its recently discovered inhibition of anandamide uptake and hydrolysis and to its anti-oxidative effect.”

http://www.ncbi.nlm.nih.gov/pubmed/12505688

http://www.scribd.com/doc/52920296/Cannabidiol-an-Overview-of-Some-Chemical-and-Pharmacological-Aspects-Part-I-Chemical-Aspects

The endocannabinoid system and Alzheimer’s disease.

“The importance of the role of the endocannabinoid system (ECS) in neurodegenerative diseases has grown during the past few years. Mostly because of the high density and wide distribution of cannabinoid receptors of the CB(1) type in the central nervous system (CNS), much research focused on the function(s) that these receptors might play in pathophysiological conditions.

Our current understanding, however, points to much diverse roles for this system. In particular, other elements of the ECS, such as the fatty acid amide hydrolase (FAAH) or the CB(2) cannabinoid receptor are now considered as promising pharmacological targets for some diseases and new cannabinoids have been incorporated as therapeutic tools.

 Although still preliminary, recent reports suggest that the modulation of the ECS may constitute a novel approach for the treatment of Alzheimer’s disease (AD). Data obtained in vitro, as well as in animal models for this disease and in human samples seem to corroborate the notion that the activation of the ECS, through the use of agonists or by enhancing the endogenous cannabinoid tone, may induce beneficial effects on the evolution of this disease.”

http://www.ncbi.nlm.nih.gov/pubmed/17952652

Medical Marijuana as Effective Treatment for Alzheimer’s Disease

“Regular low dose cannabis smoking might keep Alzheimer’s away, according to marijuana research by professor Gary Wenk and associate professor Yannic Marchalant of the Ohio State Department of Psychology. Wenk’s studies show that a low dosage in the morning of a certain cannabinoid, a component in marijuana, reversed memory loss in older rats’ brains. In his study, an experimental group of old rats received a dosage, and a control group of rats did not. The old rats that received the drugs performed better on memory tests, and the drug slowed and prevented brain cell death.”

Image and video hosting by TinyPic

“Alzheimer’s is a disease unique to humans…, but rat brains are similar enough to human brains to serve as partial models for humans, Wenk said.

… marijuana is the first substance that has worked on older brains in experiments.”

 

Read more: http://alzheimers-review.blogspot.com/2009/11/medical-marijuana-as-effective.html

 

Cannabidiol affects the expression of genes involved in zinc homeostasis in BV-2 microglial cells.

“Cannabidiol (CBD) has been shown to exhibit anti-inflammatory, antioxidant and neuroprotective properties. Unlike Δ(9)-tetrahydrocannabinol (THC), CBD is devoid of psychotropic effects and has very low affinity for both cannabinoid receptors, CB(1) and CB(2). We have previously reported that CBD and THC have different effects on anti-inflammatory pathways in lipopolysaccharide-stimulated BV-2 microglial cells, in a CB(1)/CB(2) independent manner. Moreover, CBD treatment of BV-2 cells, was found to induce a robust change in the expression of genes related to oxidative stress, glutathione deprivation and inflammation. Many of these genes were shown to be controlled by Nrf2 and ATF4 transcription factors. Using the Illumina MouseRef-8 BeadChip platform, DAVID Bioinformatics and Ingenuity Pathway Analysis, we identified functional sets of genes and networks affected by CBD. A subset of genes was found to be regulated by the metal responsive element (MRE)-binding transcription factor-1 (MTF-1) and is shown to be related to zinc homeostasis. We found that CBD upregulates the expression of the mRNAs for metallothionein 2 (Mt2), N-myc-downstream regulated gene 1 and matrix metalloproteinase 23 as well as of the zinc transporters ZnT1/Slc30a1 and Zip4/Slc39a4 but downregulates the expression of the mRNA for the zinc transporter Zip10/Slc39a10 as well as for the zinc finger protein 472. Among these genes, ZnT1, Mt2 and the zinc transporters ZIPs are known to function together to control the intracellular zinc concentration. These results show that CBD, but much less so THC, affects the expression of genes involved in zinc homeostasis and suggest that the regulation of zinc levels could have an important role through which CBD may exert its antioxidant and anti-inflammatory effects.”

http://www.ncbi.nlm.nih.gov/pubmed/22178458

Cannabidiol as an Emergent Therapeutic Strategy for Lessening the Impact of Inflammation on Oxidative Stress

Figure 1

“Growing evidence suggests that the endocannabinoid system, which includes the CB1 and CB2 G protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system, but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development.

This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types I and II diabetes, atherosclerosis, Alzheimer’s disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain.

Cannabidiol (CBD) is the major nonpsychotropic cannabinoid compound derived from the plant Cannabis sativa, commonly known as marijuana…

Conclusions

Inflammation and oxidative stress are intimately involved in the genesis of many human diseases. Unraveling that relationship therapeutically has proven challenging, in part because inflammation and oxidative stress “feed off” each other. However, CBD would seem to be a promising starting point for further drug development given its anti-oxidant (although relatively modest) and anti-inflammatory actions on immune cells, such as macrophages and microglia. CBD also has the advantage of not having psychotropic side effects. Studies on models of human diseases support the idea that CBD attenuates inflammation far beyond its antioxidant properties, for example, by targeting inflammation-related intracellular signaling events. The details on how CBD targets inflammatory signaling remain to be defined.

The therapeutic utility of CBD is a relatively new area of investigation that portends new discoveries on the interplay between inflammation and oxidative stress, a relationship that underlies tissue and organ damage in many human diseases.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085542/

Israeli Research Shows Cannabidiol May Slow Alzheimer’s Disease

“An Israeli researcher has found that a non-psychoactive component of cannabis may help slow the progression of Alzheimer’s disease. The initial findings of a study at the Hebrew University of Jerusalem show that a non-psychoactive component of cannabis, marijuana, may hold out hope for slowing down the progression of Alzheimer’s disease.The research, still at an early stage, indicates that memory loss, the first and primary symptom of Alzheimer’s disease, can be slowed down significantly in mice by cannabidiol. Alzheimer’s disease, the most common form of dementia, affects some 24.3 million people worldwide.”

Read more: http://www.israelnationalnews.com/News/News.aspx/125564