Cannabinoid-like anti-inflammatory compounds from flax fiber.

Abstract

“Flax is a valuable source of fibers, linseed and oil. The compounds of the latter two products have already been widely examined and have been proven to possess many health-beneficial properties. In the course of analysis of fibers extract from previously generated transgenic plants overproducing phenylpropanoids a new terpenoid compound was discovered.The UV spectra and the retention time in UPLC analysis of this new compound reveal similarity to a cannabinoid-like compound, probably cannabidiol (CBD). This was confirmed by finding two ions at m/z 174.1 and 231.2 in mass spectra analysis. Further confirmation of the nature of the compound was based on a biological activity assay. It was found that the compound affects the expression of genes involved in inflammatory processes in mouse and human fibroblasts and likely the CBD from Cannabis sativa activates the specific peripheral cannabinoid receptor 2 (CB2) gene expression. Besides fibers, the compound was also found in all other flax tissues. It should be pointed out that the industrial process of fabric production does not affect CBD activity.The presented data suggest for the first time that flax products can be a source of biologically active cannabinoid-like compounds that are able to influence the cell immunological response. These findings might open up many new applications for medical flax products, especially for the fabric as a material for wound dressing with anti-inflammatory properties.”

http://www.ncbi.nlm.nih.gov/pubmed/22706678

Analgesic and antiinflammatory activity of constituents of Cannabis sativa L.

Abstract

“Two extracts of Cannabis sativa herb, one being cannabinoid-free (ethanol) and the other containing the cannabinoids (petroleum), were shown to inhibit PBQ-induced writhing in mouse when given orally and also to antagonize tetradecanoylphorbol acetate (TPA)-induced erythema of mouse skin when applied topically. With the exception of cannabinol (CBN) and delta 1-tetrahydrocannabinol (delta 1-THC), the cannabinoids and olivetol (their biosynthetic precursor) demonstrated activity in the PBQ test exhibiting their maximal effect at doses of about 100 micrograms/kg. delta 1-THC only became maximally effective in doses of 10 mg/kg. This higher dose corresponded to that which induced catalepsy and is indicative of a central action. CNB demonstrated little activity and even at doses in excess of 10 mg/kg could only produce a 40% inhibition of PBQ-induced writhing. Cannabinoid (CBD) was the most effective of the cannabinoids at doses of 100 micrograms/kg. Doses of cannabinoids that were effective in the analgesic test orally were used topically to antagonize TPA-induced erythema of skin. The fact that delta 1-THC and CBN were the least effective in this test suggests a structural relationship between analgesic activity and antiinflammatory activity among the cannabinoids related to their peripheral actions and separate from the central effects of delta 1-THC.”

http://www.ncbi.nlm.nih.gov/pubmed/3169967

Medical Marijuana Inc. Marijuana Extract Cannabidiol (CBD) Anti-inflammatory Properties

 “SAN DIEGO–(BUSINESS WIRE)–Medical Marijuana Inc (OTC: MJNA) is pleased to announce that studies have shown Cannabidiol (CBD) has anti-inflammatory properties. Medical Marijuana Inc. through CannaBANK has a patent pending on an extraction method from Cannabis (Marijuana) and its industrialized non psychoactive counterpart Hemp, allowing Cannabidiol (CBD) to be isolated in its pure form. Once isolated the Cannabidiol can be added as a direct counter agent or as an additive to other current anti-inflammatory products.

Medical Marijuana Inc. is planning on expanding its Cannabidiol sales through licensing agreements with companies already involved in the heavily marketed nutraceutical and pharmaceutical markets.

Resources and Abstracts on Anti-inflammatory properties of Cannabidiol:
United States National Library of Medicine (PubMed)”

http://www.ncbi.nlm.nih.gov/pubmed/19199042
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3034694/
http://www.ncbi.nlm.nih.gov/pubmed/19070683
http://www.ncbi.nlm.nih.gov/pubmed/18641283
http://www.ncbi.nlm.nih.gov/pubmed/18469842
http://www.ncbi.nlm.nih.gov/pubmed/14963641

http://www.businesswire.com/news/home/20110923005989/en/Medical-Marijuana-Marijuana-Extract-Cannabidiol-CBD-Anti-inflammatory?fb_action_ids=459561104080536&fb_action_types=og.likes&fb_ref=news_view&fb_source=aggregation&fb_aggregation_id=288381481237582

Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice

 “Cannabidiol is a Cannabis-derived non-psychotropic compound that exerts a plethora of pharmacological actions, including anti-inflammatory, neuroprotective and antitumour effects, with potential therapeutic interest. However, the actions of cannabidiol in the digestive tract are largely unexplored. In the present study, we investigated the effect of cannabidiol on intestinal motility in normal (control) mice and in mice with intestinal inflammation.”

“Cannabidiol selectively reduces croton oil-induced hypermotility in mice in vivo and this effect involves cannabinoid CB1 receptors and FAAH. In view of its low toxicity in humans, cannabidiol may represent a good candidate to normalize motility in patients with inflammatory bowel disease.”

“The plant Cannabis sativa contains more than 60 terpenophenolic compounds, named phytocannabinoids. The best-studied phytocannabinoid is Δ9-tetrahydrocannabinol, which binds specific G-protein-coupled receptors, named cannabinoid (CB1 and CB2) receptors. The well-known psychotropic effects of Δ9-tetrahydrocannabinol, which are largely mediated by activation of brain cannabinoid CB1 receptors, have always raised a number of clinical and ethical problems. Therefore, a valid therapeutic alternative may be the use of non-psychotropic phytocannabinoids, including cannabidiol (CBD). CBD, unlike Δ9-tetrahydrocannabinol, has very low affinity for both cannabinoid CB1 and CB2 receptors, although it has been proposed that CBD may modulate endocannabinoid function through its ability to inhibit the hydrolysis of anandamide and to act as a transient receptor potential vanilloid 1 agonist. CBD is a major component of Sativex, a preparation of cannabinoids, which has been approved by Health Canada for the treatment of neuropathic pain in multiple sclerosis.”

“The pharmacological profile of CBD has been recently reviewed. Briefly stated, CBD has been shown to exert (1) antioxidant, neuroprotective and antiproliferative actions in cultured cells and (2) anti-anxiety, hypnotic, anticonvulsant, neuroprotective, antinausea, anti-ischaemic, anticancer and notably anti-inflammatory effects in rodents in vivo. The anti-inflammatory effects of CBD have been demonstrated in both acute and chronic experimental models of inflammation, that is, paw oedema and arthritis.”

“In conclusion, we have shown that the marijuana component CBD normalize intestinal motility in an experimental model of ileitis. In vitro results showed antispasmodic actions of CBD on intestinal ileal segments. The inhibitory effect of CBD involves, at least in vivo, cannabinoid CB1 receptors and FAAH. In view of its safety records in humans (an average daily dose of about 700 mg/day for 6 weeks was found to be non-toxic, relative to placebo, in clinical trials; and because CBD reduced motility during inflammation and not in physiological conditions, CBD might be considered as a good candidate to be clinically evaluated for the treatment of hypermotility associated with inflammatory bowel disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2451037/

Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study

  Journal of Neuroinflammation logo

“The phytocannabinoid cannabidiol (CBD) exhibits antioxidant and antiinflammatory properties. The present study was designed to explore its effects in a mouse model of sepsis-related encephalitis by intravenous administration of lipopolysaccharide (LPS).”.

“CBD prevented LPS-induced arteriolar and venular vasodilation as well as leukocyte margination. In addition, CBD abolished LPS-induced increases in tumor necrosis factor-alpha and cyclooxygenase-2 expression as measured by quantitative real time PCR. The expression of the inducible-nitric oxide synthase was also reduced by CBD. Finally, preservation of Blood Brain Barrier integrity was also associated to the treatment with CBD.”

“These data highlight the antiinflammatory and vascular-stabilizing effects of CBD in endotoxic shock and suggest a possible beneficial effect of this natural cannabinoid.”

“Cannabidiol (CBD] is a phytocannabinoid with well-known antiinflammatory and antioxidant properties. El-Remessy et al recently reported that CBD prevented inflammatory and oxidative damage and preserved endothelial integrity in an experimental model of diabetic retinopathy. Furthermore, CBD preserves cerebral circulation in pathological conditions such as brain ischemia. Recent data support the clinical use of CBD for the treatment of a variety of damaging conditions, including nephropathy and diabetic cardiomyopathy. In particular, the antioxidant properties of CBD seem to play a major role in the protective effects of this phytocannabinoid against the oxidative and nitrosative stress induced by chemoterapy agents and by high glucose conditions.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3034694/

https://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-8-5

Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice

“Background

Alzheimer’s disease (AD) brain shows an ongoing inflammatory condition and non-steroidal anti-inflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and anti-inflammatory agents with therapeutic potential.”

“… we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Aβ clearance.”

“Cannabinoids, whether plant derived, synthetic or endocannabinoids, interact with two well characterized cannabinoid receptors, CB1 and CB2 . In addition, some cannabinoids may interact with other receptors, such as the TRPV1 receptor or the orphan receptor GPR55. The CB1 receptor is widely distributed, with a particularly high expression in brain, which contrasts with the limited expression of the CB2 receptor, which is characteristic of immune organs and cells. In fact, while CB1 receptors are expressed by all types of cells in the brain (neurons and glial cells), CB2 are mainly localized in microglial cells, the resident immune cell of the brain.”

“We and others have proposed cannabinoids as preventive treatment for AD, based on their neuroprotective and anti-inflammatory effects. Indeed, cannabinoids are able to decrease the release of cytokines and nitric oxide in cultured microglial cells induced by lipopolysacharide and Aβ addition. In several in vitro studies cannabidiol (CBD), the major non-psychotropic constituent of cannabis, has shown to be neuroprotective against β-amyloid (Aβ) addition to cultured cells.”

“Conclusions

In summary, cannabinoid agonists, in particular CB2 selective agonists, interfere with several interconnected events of importance in the pathophysiology of AD. These compounds by directly interacting with cannabinoid receptors, in particular CB2, decrease microglial activation thereby reducing inflammation and its consequences (eg cognitive deficits). At the same time they may indirectly have beneficial effects on microglial activation (eg decrease cytokine release) by lowering brain Aβ levels.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292807/

The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain.

Abstract

“Cannabidiol, the major psycho-inactive component of cannabis, has substantial anti-inflammatory and immunomodulatory effects. This study investigated its therapeutic potential on neuropathic (sciatic nerve chronic constriction) and inflammatory pain (complete Freund’s adjuvant intraplantar injection) in rats. In both models, daily oral treatment with cannabidiol (2.5-20 mg/kg to neuropathic and 20 mg/kg to adjuvant-injected rats) from day 7 to day 14 after the injury, or intraplantar injection, reduced hyperalgesia to thermal and mechanical stimuli. In the neuropathic animals, the anti-hyperalgesic effect of cannabidiol (20 mg/kg) was prevented by the vanilloid antagonist capsazepine (10 mg/kg, i.p.), but not by cannabinoid receptor antagonists. Cannabidiol’s activity was associated with a reduction in the content of several mediators, such as prostaglandin E(2) (PGE(2)), lipid peroxide and nitric oxide (NO), and in the over-activity of glutathione-related enzymes. Cannabidiol only reduced the over-expression of constitutive endothelial NO synthase (NOS), without significantly affecting the inducible form (iNOS) in inflamed paw tissues. Cannabidiol had no effect on neuronal and iNOS isoforms in injured sciatic nerve. The compound’s efficacy on neuropathic pain was not accompanied by any reduction in nuclear factor-kappaB (NF-kappaB) activation and tumor necrosis factor alpha (TNFalpha) content. The results indicate a potential for therapeutic use of cannabidiol in chronic painful states.”

http://www.ncbi.nlm.nih.gov/pubmed/17157290

Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw.

Abstract

“Cannabidiol, the major non-psychoactive component of marijuana, has various pharmacological actions of clinical interest. It is reportedly effective as an anti-inflammatory and anti-arthritic in murine collagen-induced arthritis.

The present study examined the anti-inflammatory and anti-hyperalgesic effects of cannabidiol, administered orally (5-40 mg/kg) once a day for 3 days after the onset of acute inflammation induced by intraplantar injection of 0.1 ml carrageenan (1% w/v in saline) in the rat. At the end of the treatment prostaglandin E2 (PGE2) was assayed in the plasma, and cyclooxygenase (COX) activity, production of nitric oxide (NO; nitrite/nitrate content), and of other oxygen-derived free radicals (malondialdehyde) in inflamed paw tissues. All these markers were significantly increased following carrageenan. Thermal hyperalgesia, induced by carrageenan and assessed by the plantar test, lasted 7 h. Cannabidiol had a time- and dose-dependent anti-hyperalgesic effect after a single injection. Edema following carrageenan peaked at 3 h and lasted 72 h; a single dose of cannabidiol reduced edema in a dose-dependent fashion and subsequent daily doses caused further time- and dose-related reductions. There were decreases in PGE2 plasma levels, tissue COX activity, production of oxygen-derived free radicals, and NO after three doses of cannabidiol. The effect on NO seemed to depend on a lower expression of the endothelial isoform of NO synthase.

 In conclusion, oral cannabidiol has a beneficial action on two symptoms of established inflammation: edema and hyperalgesia.”

http://www.ncbi.nlm.nih.gov/pubmed/14963641

Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid?

Abstract

“Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, antioxidant, antiemetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and antioxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders. In fact, CBD combined with Δ(9) -tetrahydrocannabinol is already under clinical evaluation in patients with Huntington’s disease to determine its potential as a disease-modifying therapy. The neuroprotective properties of CBD do not appear to be exerted by the activation of key targets within the endocannabinoid system for plant-derived cannabinoids like Δ(9) -tetrahydrocannabinol, i.e. CB(1) and CB(2) receptors, as CBD has negligible activity at these cannabinoid receptors, although certain activity at the CB(2) receptor has been documented in specific pathological conditions (i.e. damage of immature brain). Within the endocannabinoid system, CBD has been shown to have an inhibitory effect on the inactivation of endocannabinoids (i.e. inhibition of FAAH enzyme), thereby enhancing the action of these endogenous molecules on cannabinoid receptors, which is also noted in certain pathological conditions. CBD acts not only through the endocannabinoid system, but also causes direct or indirect activation of metabotropic receptors for serotonin or adenosine, and can target nuclear receptors of the PPAR family and also ion channels.”

http://www.ncbi.nlm.nih.gov/pubmed/22625422

Marijuana Compound Treats Schizophrenia with Few Side Effects:Clinical Trial

“A compound found in marijuana can treat schizophrenia as effectively as antipsychotic medications, with far fewer side effects, according to a preliminary clinical trial.

“Because it comes from marijuana, there are obvious political issues surrounding its use. Extracting it from the plant is also expensive. But the biggest barrier may be that CBD is a natural compound, and therefore can’t be patented the way new drugs are. That means that despite the possibility that it could outsell their current blockbuster antipsychotic drugs, pharmaceutical companies aren’t likely to develop it — a particularly striking fact when you consider that every major manufacturer of new generation antipsychotics in the U.S. has so far paid out hundreds of millions or billions of dollars in fines for mismarketing these drugs. Yet they still reaped huge profits.”

“For people with schizophrenia and their families, of course, it is likely to be infuriating that non-scientific issues like marijuana policy and patenting problems could stand in the way of a treatment that could potentially be so restorative. While it’s possible that these study results may not hold up or that researchers could discover problems related to long-term use of CBD,  it’s hard to imagine that they could be any worse than what patients already experience.”

Read more: http://healthland.time.com/2012/05/30/marijuana-compound-treats-schizophrenia-with-few-side-effects-clinical-trial/