Evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil by ultra-high performance liquid chromatography tandem mass spectrometry.

Image result for Clin Chem Lab Med.

“Cannabis has been used since ancient times to relieve neuropathic pain, to lower intraocular pressure, to increase appetite and finally to decrease nausea and vomiting.

The combination of the psychoactive cannabis alkaloid Δ9-tetrahydrocannabinol (THC) with the non-psychotropic alkaloids cannabidiol (CBD) and cannabinol (CBN) demonstrated a higher activity than THC alone.

Extraction efficiency of oil was significantly higher than that of water with respect to the different cannabinoids.

Fifteen minutes boiling was sufficient to achieve the highest concentrations of cannabinoids in the cannabis tea solutions.

As the first and most important aim of the different cannabis preparations is to guarantee therapeutic continuity in treated individuals, a strictly standardized preparation protocol is necessary to assure the availability of a homogeneous product of defined stability.”

https://www.ncbi.nlm.nih.gov/pubmed/28207408

Inhibition of the cataleptic effect of tetrahydrocannabinol by other constituents of Cannabis sativa L.

“Tetrahydrocannabinol (THC) induced catalepsy in mice, whereas a cannabis oil (6.68% w/w THC), four cannabinoids and a synthetic mixture did not. Cannabinol (CBN) and olivetol inhibited THC-induced catalepsy in the mornings and the evenings, but cannabidiol (CBD) exhibited this effect only in the evenings. A combination of CBN and CBD inhibited THC-induced catalepsy equal to that of CBN alone in the mornings, but this inhibition was greater than that produced by CBN alone in the evenings.”  http://www.ncbi.nlm.nih.gov/pubmed/2897447

Potentiation of the antitumor activity of adriamycin against osteosarcoma by cannabinoid WIN-55,212-2

Logo of onclett

“Osteosarcoma is the most frequent primary malignant bone tumor that occurs in children and adolescents. Osteosarcoma is a bone malignancy that predominantly affects children and adolescents, and exhibits high invasion and metastasis rates.

Although adriamycin (ADM) is an effective benchmark agent for the management of osteosarcoma, it also results in harmful side-effects including toxicity and chemoresistance that substantially affect the quality of life of patients. Therefore, novel therapeutic approaches and drugs must be sought for the treatment of osteosarcoma.

Natural products which have potential antitumor activities have become a focus of attention for study in previous years. Cannabinoids, the active components naturally derived from the marijuana plant Cannabis sativa L., have been reported as potential antitumor drugs based on their ability to limit inflammation, cell proliferation and cell survival.

To date, several cannabinoids have been identified and characterized, including Δ(9)-tetrahydrocannabinol (THC), cannabidiol, cannabinol (CBN) and anandamide, as well as synthetic cannabinoids, including WIN-55,212-2, JWH-133 and (R)-methanandamide.

In the early 1970s, THC and CBN were shown to inhibit tumor growth in Lewis lung carcinoma. Subsequently, cannabinoids were found to induce apoptosis and inhibit the proliferation of various cancer cells, including those of glioma and lymphoma, and prostate, breast, skin and pancreatic cancer…

In conclusion, the present study indicated that cannabinoid WIN-55,212-2 is antiproliferative, antimetastatic and antiangiogenic against MG-63 cells in vitro, and presented evidence that cannabinoid WIN-55,212-2 may result in synergistic antitumor action in combination with ADM against osteosarcoma.

These findings may offer a novel strategy for the treatment of osteosarcoma.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580018/

[Potential applications of marijuana and cannabinoids in medicine]

“Cannabinoids, psychoactive substances present in cannabis, have been known to mankind for hundreds of years.

Apart from 9-tetrahydrocannabinol (THC) substances found in the cannabis herb with the highest toxicological value are cannabidiol (CBD) and cannabinol (CBN).

The discovery of CB1 and CB2 receptors, located in various tissues (ranging from the brain to peripheral tissues), has defined the potential objective of these new chemical substances’ effects.

Many studies on the application of cannabinoids in the treatment of various diseases such as diabetes, neoplasms, inflammatory diseases, neurological conditions, pain and vomitting were conducted.

Drugs containing e.g. THC appear on the pharmaceutical market.

Substances affecting cannabinoid receptors may show beneficial effects…”

http://www.ncbi.nlm.nih.gov/pubmed/25518584

 

 

The detection of THC, CBD and CBN in the oral fluid of Sativex® patients using two on-site screening tests and LC-MS/MS.

“Sativex® is an oromucosal spray used to treat spasticity in multiple sclerosis sufferers in some European countries, the United Kingdom, Canada and New Zealand. The drug has also recently been registered by the Therapeutic Goods Administration (TGA) in Australia for treatment of multiple sclerosis.

Sativex® contains high concentrations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), with the former being the subject of random roadside drug tests across Australia to detect cannabis use.

This pilot study aims to determine whether or not patients taking Sativex® will test positive to THC using these roadside screening tests. Detectable levels of THC, CBD and cannabinol (CBN) in their oral fluid were also confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The study was a double-blind, placebo controlled design.

In conclusion, Sativex® users may test positive for THC by roadside drug testing within 2-3h of use. Confirmatory analysis can identify Sativex® treatment through use of THC/CBD ratios, however, these ratios would unlikely be sufficient to differentiate non-medicinal cannabis use from Sativex® use if both are taken concurrently.”

http://www.ncbi.nlm.nih.gov/pubmed/24699310

Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes.

“Inhibitory effects of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), cannabidiol (CBD), and cannabinol (CBN), the three major constituents in marijuana, on catalytic activities of human cytochrome P450 (CYP) 1 enzymes were investigated.

These results indicated that CBD and CBN showed CYP1 isoform-selective direct inhibition and that CBD was characterized as a potent mechanism-based inhibitor of human CYP1 enzymes, especially CYP1A1.”

http://www.ncbi.nlm.nih.gov/pubmed/20117100

“CYP1A1 regulates breast cancer proliferation and survival. This study supports the notion that CYP1A1 promotes breast cancer proliferation and survival… reduction of CYP1A1 levels is a potential strategy for breast cancer therapeutics.”  http://www.ncbi.nlm.nih.gov/pubmed/23576571

Anticoagulant effects of a Cannabis extract in an obese rat model.

“Blood coagulation studies were conducted to determine the possible anti-/prothrombotic effect of an organic cannabis extract and the three major cannabinoids, THC, CBD and CBN…

The study thus shows that Cannabis sativa and the cannabinoids, THC and CBN, display anticoagulant activity and may be useful in the treatment of diseases such as type 2 diabetes in which a hypercoagulable state exists.”

 http://www.ncbi.nlm.nih.gov/pubmed/16644197

Killing bacteria with cannabis

“Pharmacists and chemists have found another use for the multipurpose cannabis as a source of antibacterial chemicals for multidrug resistant bacteria.”

 

“All five cannabinoids (THC, CBD, CBG, CBC, and CBN) were potent against bacteria. Notably, they performed well against bacteria that were known to be multidrug resistant, like the strains of MRSA…

CBD and CBG have the most potential for consumer use because they are nonpsychotropic…”

More: http://arstechnica.com/science/2008/08/killing-bacteria-with-cannabis/

“Antibacterial cannabinoids from Cannabis sativa: a structure-activity study.” http://www.ncbi.nlm.nih.gov/pubmed/18681481

Phytocannabinoids

“Phytocannabinoids, also called ”natural cannabinoids”, ”herbal cannabinoids”, and ”classical cannabinoids”, are only known to occur naturally in significant quantity in the cannabis plant, and are concentrated in a viscous resin that is produced in glandular structures known as trichomes.

In addition to cannabinoids, the resin is rich in terpenes, which are largely responsible for the odour of the cannabis plant.

Phytocannabinoids are nearly insoluble in water but are soluble in lipids, alcohols, and other non-polar organic solvents. However, as phenols, they form more water-soluble phenolate salts under strongly alkaline conditions.

All-natural cannabinoids are derived from their respective 2-carboxylic acids (2-COOH) by decarboxylation (catalyzed by heat, light, or alkaline conditions).

Types

At least 66 cannabinoids have been isolated from the cannabis plant. To the right the main classes of natural cannabinoids are shown. All classes derive from cannabigerol-type compounds and differ mainly in the way this precursor is cyclized.

Tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) are the most prevalent natural cannabinoids and have received the most study. Other common cannabinoids are listed below:

  • CBG Cannabigerol
  • CBC Cannabichromene
  • CBL Cannabicyclol
  • CBV Cannabivarin
  • THCV Tetrahydrocannabivarin
  • CBDV Cannabidivarin
  • CBCV Cannabichromevarin
  • CBGV Cannabigerovarin
  • CBGM Cannabigerol Monoethyl Ether

Tetrahydrocannabinol

Tetrahydrocannabinol (THC) is the primary psychoactive component of the plant. It appears to ease moderate pain (analgetic) and to be neuroprotective. THC has approximately equal affinity for the CB1 and CB2 receptors. Its effects are perceived to be more cerebral.

”Delta”-9-Tetrahydrocannabinol (Δ9-THC, THC) and ”delta”-8-tetrahydrocannabinol (Δ8-THC), mimic the action of anandamide, a neurotransmitter produced naturally in the body. The THCs produce the ”high” associated with cannabis by binding to the CB1 cannabinoid receptors in the brain.

Cannabidiol

Cannabidiol (CBD) is not psychoactive, and was thought not to affect the psychoactivity of THC. However, recent evidence shows that smokers of cannabis with a higher CBD/THC ratio were less likely to experience schizophrenia-like symptoms.

This is supported by psychological tests, in which participants experience less intense psychotic effects when intravenous THC was co-administered with CBD (as measured with a PANSS test).

It has been hypothesized that CBD acts as an allosteric antagonist at the CB1 receptor and thus alters the psychoactive effects of THC.

It appears to relieve convulsion, inflammation, anxiety, and nausea. CBD has a greater affinity for the CB2 receptor than for the CB1 receptor.

Cannabigerol

Cannabigerol (CBG) is non-psychotomimetic but still affects the overall effects of Cannabis. It acts as an α2-adrenergic receptor agonist, 5-HT1A receptor antagonist, and CB1 receptor antagonist. It also binds to the CB2 receptor.

Tetrahydrocannabivarin

Tetrahydrocannabivarin (THCV) is prevalent in certain South African and Southeast Asian strains of Cannabis. It is an antagonist of THC at CB1 receptors and attenuates the psychoactive effects of THC.

Cannabichromene

Cannabichromene (CBC) is non-psychoactive and does not affect the psychoactivity of THC It is found in nearly all tissues in a wide range of animals.

Two analogs of anandamide, 7,10,13,16-docosatetraenoylethanolamide and ”homo”-γ-linolenoylethanolamine, have similar pharmacology.

All of these are members of a family of signalling lipids called ”N”-acylethanolamides, which also includes the noncannabimimetic palmitoylethanolamide and oleoylethanolamine, which possess anti-inflammatory and orexigenic effects, respectively. Many ”N”-acylethanolamines have also been identified in plant seeds and in molluscs.

  • 2-arachidonoyl glycerol (2-AG)

Another endocannabinoid, 2-arachidonoyl glycerol, binds to both the CB1 and CB2 receptors with similar affinity, acting as a full agonist at both, and there is some controversy over whether 2-AG rather than anandamide is chiefly responsible for endocannabinoid signalling ”in vivo”.

In particular, one ”in vitro” study suggests that 2-AG is capable of stimulating higher G-protein activation than anandamide, although the physiological implications of this finding are not yet known.

  • 2-arachidonyl glyceryl ether (noladin ether)

In 2001, a third, ether-type endocannabinoid, 2-arachidonyl glyceryl ether (noladin ether), was isolated from porcine brain.

Prior to this discovery, it had been synthesized as a stable analog of 2-AG; indeed, some controversy remains over its classification as an endocannabinoid, as another group failed to detect the substance at “any appreciable amount” in the brains of several different mammalian species.

It binds to the CB1 cannabinoid receptor (”K”i = 21.2 nmol/L) and causes sedation, hypothermia, intestinal immobility, and mild antinociception in mice. It binds primarily to the CB1 receptor, and only weakly to the CB2 receptor.

Like anandamide, NADA is also an agonist for the vanilloid receptor subtype 1 (TRPV1), a member of the vanilloid receptor family.

  • Virodhamine (OAE)

A fifth endocannabinoid, virodhamine, or ”O”-arachidonoyl-ethanolamine (OAE), was discovered in June 2002. Although it is a full agonist at CB2 and a partial agonist at CB1, it behaves as a CB1 antagonist ”in vivo”.

In rats, virodhamine was found to be present at comparable or slightly lower concentrations than anandamide in the brain, but 2- to 9-fold higher concentrations peripherally.

Function

Endocannabinoids serve as intercellular ‘lipid messengers’, signaling molecules that are released from one cell and activate the cannabinoid receptors present on other nearby cells.

Although in this intercellular signaling role they are similar to the well-known monoamine neurotransmitters, such as acetylcholine and dopamine, endocannabinoids differ in numerous ways from them. For instance, they use retrograde signaling.

Furthermore, endocannabinoids are lipophilic molecules that are not very soluble in water. They are not stored in vesicles, and exist as integral constituents of the membrane bilayers that make up cells. They are believed to be synthesized ‘on-demand’ rather than made and stored for later use.

The mechanisms and enzymes underlying the biosynthesis of endocannabinoids remain elusive and continue to be an area of active research.

The endocannabinoid 2-AG has been found in bovine and human maternal milk.

Retrograde signal

Conventional neurotransmitters are released from a ‘presynaptic’ cell and activate appropriate receptors on a ‘postsynaptic’ cell, where presynaptic and postsynaptic designate the sending and receiving sides of a synapse, respectively.

Endocannabinoids, on the other hand, are described as retrograde transmitters because they most commonly travel ‘backwards’ against the usual synaptic transmitter flow.

They are, in effect, released from the postsynaptic cell and act on the presynaptic cell, where the target receptors are densely concentrated on axonal terminals in the zones from which conventional neurotransmitters are released.

Activation of cannabinoid receptors temporarily reduces the amount of conventional neurotransmitter released.

This endocannabinoid mediated system permits the postsynaptic cell to control its own incoming synaptic traffic.

The ultimate effect on the endocannabinoid-releasing cell depends on the nature of the conventional transmitter being controlled.

For instance, when the release of the inhibitory transmitter GABA is reduced, the net effect is an increase in the excitability of the endocannabinoid-releasing cell.

On the converse, when release of the excitatory neurotransmitter glutamate is reduced, the net effect is a decrease in the excitability of the endocannabinoid-releasing cell.

Range

Endocannabinoids are hydrophobic molecules. They cannot travel unaided for long distances in the aqueous medium surrounding the cells from which they are released, and therefore act locally on nearby target cells. Hence, although emanating diffusely from their source cells, they have much more restricted spheres of influence than do hormones, which can affect cells throughout the body.

Other thoughts

Endocannabinoids constitute a versatile system for affecting neuronal network properties in the nervous system.

”Scientific American” published an article in December 2004, entitled “The Brain’s Own Marijuana” discussing the endogenous cannabinoid system.

The current understanding recognizes the role that endocannabinoids play in almost every major life function in the human body.

U.S. Patent # 6630507

In 2003 The U.S.A.’s Government as represented by the Department of Health and Human Services was awarded a patent on cannabinoids as antioxidants and neuroprotectants. U.S. Patent 6630507.”

http://www.news-medical.net/health/Phytocannabinoids.aspx

Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival.

Abstract

“Therapeutic options for amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, remain limited. Emerging evidence from clinical studies and transgenic mouse models of ALS suggests that cannabinoids, the bioactive ingredients of marijuana (Cannabis sativa) might have some therapeutic benefit in this disease. However, Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the predominant cannabinoid in marijuana, induces mind-altering effects and is partially addictive, compromising its clinical usefulness. We therefore tested whether cannabinol (CBN), a non-psychotropic cannabinoid, influences disease progression and survival in the SOD1 (G93A) mouse model of ALS. CBN was delivered via subcutaneously implanted osmotic mini-pumps (5 mg/kg/day) over a period of up to 12 weeks. We found that this treatment significantly delays disease onset by more than two weeks while survival was not affected. Further research is necessary to determine whether non-psychotropic cannabinoids might be useful in ameliorating symptoms in ALS.”

http://www.ncbi.nlm.nih.gov/pubmed/16183560