Cannabinoids in late-onset Alzheimer’s disease.

“Given the lack of effective treatments for late-onset Alzheimer’s disease (LOAD) and the substantial burden on patients, families, healthcare systems, and economies, finding an effective therapy is one of the highest medical priorities.

The past few years have seen a growing interest in the medicinal uses of cannabinoids, the bioactive components of the cannabis plant, including the treatment of LOAD and other physical conditions that are common in older people.

Several in vitro and in vivo studies have demonstrated that cannabinoids can reduce oxidative stress, neuroinflammation, and the formation of amyloid plaques and neurofibrillary tangles, the key hallmarks of LOAD.

Also, in population-based studies, cannabinoids reduced dementia-related symptoms (e.g., behavioral disturbances).

The current article provides an overview of the potential of cannabinoids in the treatment of LOAD and related neuropsychiatric symptoms in older people.

We also discuss the efficacy, safety and pharmacokinetics of cannabinoid-based drugs in older people with dementia.”

http://www.ncbi.nlm.nih.gov/pubmed/25788394

http://www.thctotalhealthcare.com/category/alzheimers-disease-ad/

Cannabis in cancer care.

“Cannabis has been used in medicine for thousands of years prior to achieving its current illicit substance status.

Cannabinoids, the active components of Cannabis sativa, mimic the effects of the endogenous cannabinoids (endocannabinoids), activating specific cannabinoid receptors, particularly CB1 found predominantly in the central nervous system and CB2 found predominantly in cells involved with immune function.

Delta-9-tetrahydrocannabinol, the main bioactive cannabinoid in the plant, has been available as a prescription medication approved for treatment of cancer chemotherapy-induced nausea and vomiting and anorexia associated with the AIDS wasting syndrome.

Cannabinoids may be of benefit in the treatment of cancer-related pain, possibly synergistic with opioid analgesics.

Cannabinoids have been shown to be of benefit in the treatment of HIV-related peripheral neuropathy, suggesting that they may be worthy of study in patients with other neuropathic symptoms.

Cannabinoids have a favorable drug safety profile, but their medical use is predominantly limited by their psychoactive effects and their limited bioavailability.”

http://www.ncbi.nlm.nih.gov/pubmed/25777363

http://www.thctotalhealthcare.com/category/cancer/

Role of endogenous cannabinoid system in the gut.

“The plant Cannabis has been used in clinic for centuries, and has been known to be beneficial in a variety of gastrointestinal diseases, such as emesis, diarrhea, inflammatory bowel disease and intestinal pain.

In this text, we’ll review the components of the endogenous cannabinoid system as well as its role in the regulation of gastrointestinal activities, thus providing relative information for further study.

Moreover, modulation of the endogenous cannabinoid system in gastrointestinal tract may provide a useful therapeutic target for gastrointestinal disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23963077

http://www.thctotalhealthcare.com/category/gastrointestinal-disorders/

Hebrew U. Researchers Find Cannabis Can Strengthen Bones

Arutz Sheva

“Researchers at Hebrew University have found that extracts from the cannabis plant can help strengthen human bones, preventing osteoporosis, according to an Israel21c report.”

http://www.israelnationalnews.com/News/News.aspx/96146#.VPH1lE33-ix

“Peripheral cannabinoid receptor, CB2, regulates bone mass… These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1334629/

http://www.thctotalhealthcare.com/category/osteoporosis-2/

The role of cannabinoids in regulation of nausea and vomiting, and visceral pain.

“Marijuana derived from the plant Cannabis sativa has been used for the treatment of many gastrointestinal (GI) disorders, including anorexia, emesis, abdominal pain, diarrhea, and others.

Several cannabinoid receptors, which include the cannabinoid receptor 1 (CB1), CB2, and possibly GPR55, have been identified throughout the GI tract.

These receptors may play a role in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation, and cell proliferation in the gut.

…the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system has shed new knowledge in this field.

Novel drug targets such as FAAH and monoacylglycerol lipase (MAGL) inhibitors appear to be promising in animal models, but more studies are necessary to prove their efficiency.

The promise of emerging drugs that are more selective and peripherally acting suggest that, in the near future, cannabinoids will play a major role in managing an array of GI diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/25715910

Are Cannabinoids Effective for Orofacial Pain States?

“…there is increasing attention being given in the media as well as in the biomedical sciences to the use as analgesic agents of the crude extracts of plants of the genus Cannabis (eg, marijuana) and their active ingredient delta 9-tetrahydrocannabinol (Δ9-THC).

These cannabinoid compounds have been reported in the biomedical literature to be beneficial in the treatment of some types of neuropathic pain and other pain states…

This review has found evidence indicating that they may be effective analgesic agents for neuropathic pain conditions refractory to other therapeutic approaches…

The clinical findings pointing to the usefulness of the cannabinoids for pain relief are supported by a growing body of evidence from basic science investigations addressing the possible efficacy and mechanisms of action of the cannabinoids in animal models of acute or chronic pain.

These preclinical findings add to the growing evidence that cannabinoid receptor agonists may be effective agents for the treatment of neuropathic pain and other types of pain.

They also point to their possible clinical utility in acute or chronic orofacial pain conditions, and thereby suggest an affirmative answer applies to the question posed in the title of this editorial.”

http://www.quintpub.com/journals/ofph/abstract.php?article_id=15025#.VPBsU033-iw

http://www.thctotalhealthcare.com/category/pain-2/

Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system.

Image result for cannabis

“One of the oldest pharmacological remedies for nausea and vomiting is the plant cannabis…

Cannabis has long been known to limit or prevent nausea and vomiting from a variety of causes.

This has led to extensive investigations that have revealed an important role for cannabinoids and their receptors in the regulation of nausea and emesis.

With the discovery of the endocannabinoid system, novel ways to regulate both nausea and vomiting have been discovered that involve the production of endogenous cannabinoids acting centrally.

Here we review recent progress in understanding the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system, and we discuss the potential to utilize the endocannabinoid system in the treatment of these frequently debilitating conditions…

Nausea and vomiting are frequently debilitating conditions that require substantial effort and cost to manage.

Advances in recent progress in understanding the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system have revealed significant potential for therapeutic approaches to be developed.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883513/

http://www.thctotalhealthcare.com/category/nauseavomiting/

Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice

Cover image

“Hepatocellular carcinomas will emerge as a major form of malignancy in the coming decades.

When these tumors are in advanced stages, few therapeutic options are available.

Therefore, it is essential to search for new treatment modalities to fight this disease.

Aim

Evaluate the possible protective and therapeutic effects of Cannabis extract on dimethylnitrosamine (DMNA)-induced hepatocarcinogenicity in mice.

Conclusion

The protective effect of cannabis extract is more pronounced in group taking cannabis before DMNA.

Cannabinoids might exert their anti-tumor effects by the direct induction of apoptosis and can decrease telomerase activity by inhibiting the expression of the TERT gene…”

http://www.sciencedirect.com/science/article/pii/S209050681400027X

 http://www.thctotalhealthcare.com/category/liver-cancer-2/

Evaluation of Phytocannabinoids from High Potency Cannabis sativa using In Vitro Bioassays to Determine Structure-Activity Relationships for Cannabinoid Receptor 1 and Cannabinoid Receptor 2.

“Cannabis has been around for thousands of years and has been used recreationally, medicinally, and for fiber.

Over 500 compounds have been isolated from Cannabis sativa with approximately 105 being cannabinoids. Of those 105 compounds, Δ9-tetrahydrocannabinol has been determined as the primary constituent, which is also responsible for the psychoactivity associated with Cannabis.

Cannabinoid receptors belong to the large superfamily of G protein-coupled receptors.

Targeting the cannabinoid receptors has the potential to treat a variety of conditions such as pain, neurodegeneration, appetite, immune function, anxiety, cancer, and others.

Developing in vitro bioassays to determine binding and functional activity of compounds has the ability to lead researchers to develop a safe and effective drug that may target the cannabinoid receptors…”

http://www.ncbi.nlm.nih.gov/pubmed/25419092

A systematic review of the antipsychotic properties of cannabidiol in humans.

“Despite extensive study over the past decades, available treatments for schizophrenia are only modestly effective and cause serious metabolic and neurological side effects. Therefore, there is an urgent need for novel therapeutic targets for the treatment of schizophrenia.

A highly promising new pharmacological target in the context of schizophrenia is the endocannabinoid system…

the non-psychotropic, plant-derived cannabinoid agent cannabidiol (CBD) may have antipsychotic properties, and thus may be a promising new agent in the treatment of schizophrenia.

Here we review studies that investigated the antipsychotic properties of CBD in human subjects.

Results show the ability of CBD to counteract psychotic symptoms and cognitive impairment associated with cannabis use as well as with acute THC administration.

In addition, CBD may lower the risk for developing psychosis that is related to cannabis use.

These effects are possibly mediated by opposite effects of CBD and THC on brain activity patterns in key regions implicated in the pathophysiology of schizophrenia, such as the striatum, hippocampus and prefrontal cortex.

The first small-scale clinical studies with CBD treatment of patients with psychotic symptoms further confirm the potential of CBD as an effective, safe and well-tolerated antipsychotic compound, although large randomised clinical trials will be needed before this novel therapy can be introduced into clinical practice.”

http://www.ncbi.nlm.nih.gov/pubmed/25667194

http://www.thctotalhealthcare.com/category/schizophrenia/