Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment

Figure 1.

“THE CONSEQUENCES OF ISCHEMIC INJURY in liver, heart, and brain can be ameliorated by cannabinoids, a group of diverse compounds that include constituents of the plant Cannabis sativa (phytocannabinoids), endogenous lipids (endocannabinoids), and synthetic substances. Most of the effects of cannabinoids are mediated by the G-protein-coupled receptors cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2)… 

Cannabinoids protect against ischemic stroke…

Activation of the cannabinoid 2 receptor (CB2) reduces ischemic injury in several organs…

In conclusion, our data demonstrate that by activating p38 in neutrophils, CB2 agonists inhibit neutrophil recruitment to the brain and protect against ischemic brain injury.”

http://www.fasebj.org/content/24/3/788.long

Cannabis may help stroke recovery

“CANNABIS may help to reduce brain damage after a stroke, new research suggests.

Chemical compounds found in the plant could help shrink the area of the brain affected by stroke, the study says.

Cannabinoids in the plant, as well as those that can be made artificially and those found naturally in the body, can also help improve brain function after a stroke attack, the authors said.

The study, which is to be presented to the annual UK Stroke Forum, examined previous studies conducted on the effect of the compound.

The authors, from the University of Nottingham, examined 94 studies evaluating the effects of cannabinoids on 1022 male rats, mice or monkeys.

They say the chemical “shows promise as a neuroprotective treatment for stroke”.

“This meta-analysis of pre-clinical stroke studies provides valuable information on the existing, and importantly, missing data on the use of cannabinoids as a potential treatment for stroke patients,” said lead author Dr Tim England, honorary consultant stroke physician at the University of Nottingham and Royal Derby Hospital.

Dr Dale Webb, director of research and information at the Stroke Association, added: “Stroke is the leading cause of adult disability in the UK, with more than half of all stroke survivors left dependent on others for everyday activities. With more people in the UK surviving a stroke, it’s never been more important to find new treatments to help more stroke patients make better recoveries.

“This new research is an example of the many new developments in the field of stroke which are being presented at this year’s UK Stroke Forum.

“The findings have identified the potential for cannabinoids to reduce brain damage caused by stroke.”

http://www.news.com.au/world/breaking-news/cannabis-may-help-stroke-recovery/story-e6frfkui-1226774100340

Cannabis compounds may limit stroke damage

“Chemical compounds found in cannabis may help to reduce brain damage following a stroke, new research has revealed.

Researchers at the University of Nottingham conducted a meta-analysis of experimental studies into cannabinoids; chemicals related to those found in cannabis, some of which also occur naturally in the body.

The findings showed that the compounds could reduce the size of stroke and improve .

Cannabinoids can be classified into those found naturally in the body (endocannabinoids), those made artificially (synthetic cannabinoids) or those derived from extracts from the plant cannabis sativa (phytocannabinoids).

The research, announced at the annual UK Stroke Forum, indicates that all three classes of cannabinoid could be effective in shrinking the area of the brain affected by stroke and in recovering neurological function.”

http://healthmedicinet.com/i/cannabis-compounds-may-limit-stroke-damage/

Medical Marijuana Helps Cure Chronic Disease

Medical Marijuana Helps Cure Chronic Disease

“The medicinal power of Marijuana is well documented throughtout history

Back in 2700 BC, According to Chinese lore, the Emperor Shen Nung, considered the Father of Chinese medicine, in 2700 BC ,discovered the healing properties of Marijuana as well as Ginseng and Ephedra.

Throughout recorded history, the use of Medical Marijuana  has been linked to the ancient Egyptians, Persians, Greek civilizations, George Washington, Queen Victoria and even mainstream medicine by the 1840s.

From the 1850s to Y 1942, Marijuana was listed in the United States Pharmacopeia, an official public standards-setting authority for all prescription and over-the counter medicines, as a treatment for tetanus, cholera, rabies, dysentery, alcoholism, opiate addiction, convulsive disorders, insanity, excessive menstrual bleeding and many other health problems. My father was a Dental doctor and had a license to dispense the drug, pharmacies carried it back then.

During that same time frame prohibition gained popularity, that along with a growing “faith” in federal government.

By Y 1937, the United States passed its 1st federal law against Marijuana despite objections by the American Medical Association (AMA).

In fact, Dr. William C. Woodward, testifying on behalf of the AMA, told the US Congress:

“The American Medical Association knows of no evidence that Marijuana is a dangerous drug.”

He warned that a prohibition “loses sight of the fact that future investigation may show that there are substantial medical uses for Cannabis.”

Today, we see a growing trend of acceptance of Marijuana for its medicinal purposes.

Dr. Sanjay Gupta, CNN’s chief medical correspondent, reversed his Y 2009 opinion against Marijuana when he said, “We have been terribly and systematically misled for nearly 70 yrs in the United States, and I apologize for my own role in that.”

Now people including lawmakers are seeing the legalization of Marijuana in states like Colorado and Washington for “recreational” purposes. Most Americans are in favor of Medical Marijuana,  and the legalization of this drug.

The Big Q: why does the federal government want to ban its usage?

The Big A: it is all about control and money, and there is a major market for it, plus it poses a major threat to the pharmaceutical industry.

Below are just a few of the many health benefits associated with Medical Marijuana:

1. It can stop HIV from spreading throughout the body.
2. It slows the progression of Alzheimer’s.
3. It slows the spread of cancer cells.
4. It is an active pain reliever.
5. It can prevent or help with opiate addiction.
6. It combats depression, anxiety and ADHD.
7. It can treat epilepsy and Tourette’s.
8. It can help with other neurological damage, such as concussions and strokes.
9. It can prevent blindness from glaucoma.
10. Its connected to lower insulin levels in diabetics.

Contrary to popular notions, many patients  experience health benefits from Medical Marijuana without “getting stoned.””

http://www.livetradingnews.com/medical-marijuana-helps-cure-chronic-disease-55569.htm#.U6VjgZRX-uY

Marijuana can treat autoimmune diseases, scientific study states

“Weed enthusiasts are getting their case for nationwide decriminalization of marijuana bolstered considerably by a new scientific study that promises the controversial plant can treat multiple medical maladies.

Scientists at the University of South Carolina have discovered marijuana’s potential to treat autoimmune diseases — such as arthritis, lupus, colitis and multiple sclerosis — in which chronic inflammation plays a pivotal role.

The Journal of Biological Chemistry published the researchers’ findings that state marijuana’s potential key role in fighting these diseases lies in its capacity to suppress certain immune functions, most particularly inflammation.

The study examined whether marijuana’s main active constituent, tetrahydrocannabinol (THC), could affect DNA through “epigenetic” pathways.

The group of molecules with the capacity to alter DNA and the functioning of genes it controls is collectively referred to as the epigenome. It includes a group of molecules called histones, which are responsible for inflammation, both beneficial and harmful.

The research team, led by Mitzi Nagarkatti, Prakash Nagarkatti and Xiaoming Yang, found that THC can, indeed, affect DNA expression through epigenetic pathways by altering histones.

As recreational and medical use of marijuana become more acceptable in developed countries, more research is being conducted and more potential health applications are being uncovered.

Marijuana already has a variety of medical uses including treatment of chronic pain, nausea, vomiting and the wasting syndrome experienced by some AIDS patients.”

http://atlantadailyworld.com/2014/06/05/marijuana-can-treat-autoimmune-diseases-scientific-study-states/

Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation.

Figure 2

“The cannabinoids are a group of terpenophenolic compounds present in the marijuana plant, Cannabis sativa. At present, three general types of cannabinoids have been identified: phytocannabinoids present uniquely in the cannabis plant, endogenous cannabinoids produced in humans and animals, and synthetic cannabinoids generated in a laboratory. It is worth noting that Cannabis sativa produces over 80 cannabinoids…

An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB(1), CB(2)) play a significant role in physiologic and pathologic processes, including cognitive and immune functions.

…there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer’sdisease to name a few), mainly mediated by CB(2) activation.

This review attempts to summarize recent advances in studies of CB(2) activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection.

The full potential of CB2 agonists as therapeutic agents remains to be realized.

Despite some inadequacies of preclinical models to predict clinical efficacy in humans and differences between the signaling of human and rodent CB2 receptors, the development of selective CB2 agonists may open new avenues in therapeutic intervention.

Such interventions would aim at reducing the release of pro-inflammatory mediators particularly in chronic neuropathologic conditions such as HAND or MS.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663904/

 

Cannabinoid Modulation of Neuroinflammatory Disorders

Table 1.

Cannabis sativa is a herb belonging to the Cannabaceae family, characterized by palmate leaves and numerous fibers. Its first record as a medicine dates back to 5000 years ago and it was found in China, where cannabis was used for a myriad of purposes and diseases, including malaria, neuropathic pain, nausea, sexual dysfunction and constipation.

The use of cannabis spread from Central Asia and deeply influenced Indian folk medicine. However, sedative and psychotropic effects of cannabis turned it into a recreational drug. This fact resulted in discrimination against the consumption of the cannabis plant and its derivatives, which delayed the scientific findings in this field…

In recent years, a growing interest has been dedicated to the study of the endocannabinoid system. The isolation of Cannabis sativa main psychotropic compound, Δ(9)-tetrahydrocannabinol (THC), has led to the discovery of an atypical neurotransmission system that modulates the release of other neurotransmitters and participates in many biological processes, including the cascade of inflammatory responses.

In this context, cannabinoids have been studied for their possible therapeutic properties in neuroinflammatory diseases. In this review, historic and biochemical aspects of cannabinoids are discussed, as well as their function as modulators of inflammatory processes and therapeutic perspectives for neurodegenerative disorders, particularly, multiple sclerosis.

Cannabinoid compounds may be extracted from the plant (phytocannabinoids) or be artificially obtained (synthetic cannabinoids)…

To date, it is still impossible to prove or rule out all benefits of cannabis described empirically by ancient herbal practitioners. For now, science aims to understand how cannabinoid compounds are associated with neuroinflammation and how cannabis-based medicine can help millions of patients worldwide.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386505/

Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression.

Fig. 1

“Cannabinoids are a group of compounds found in the marijuana plant (Cannabis sativaL.). Marijuana has been used both for recreational and medicinal purposes for several centuries.

Cannabinoids have been shown to be effective in the treatment of nausea and vomiting associated with cancer chemotherapy, anorexia and cachexia seen in HIV/AIDS patients, as well as neuropathic pain, and spasticity in multiple sclerosis.

More recently, the anti-inflammatory properties of cannabinoids are drawing significant attention. In the last 15 years, studies with marijuana cannabinoids led to the discovery of cannabinoid receptors (CB1 and CB2) and their endogenous ligands, which make up what is known as the endocannabinoid system.

Cannabinoids are a group of compounds present in Cannabis plant (Cannabis sativa L.). They mediate their physiological and behavioral effects by activating specific cannabinoid receptors. With the recent discovery of the cannabinoid receptors (CB1 and CB2) and the endocannabinoid system, research in this field has expanded exponentially.

Cannabinoids have been shown to act as potent immunosuppressive and anti-inflammatory agents and have been shown to mediate beneficial effects in a wide range of immune-mediated diseases such as multiple sclerosis, diabetes, septic shock, rheumatoid arthritis, and allergic asthma.

Cannabinoid receptor 1 (CB1) is mainly expressed on the cells of the central nervous system as well as in the periphery. In contrast, cannabinoid receptor 2 (CB2) is predominantly expressed on immune cells. The precise mechanisms through which cannabinoids mediate immunosuppression is only now beginning to be understood…

In this review, we will focus on apoptotic mechanisms of immunosuppression mediated by cannabinoids on different immune cell populations and discuss how activation of CB2 provides a novel therapeutic modality against inflammatory and autoimmune diseases as well as malignancies of the immune system, without exerting the untoward psychotropic effects…

…cannabinoids do induce apoptosis in immune cells, alleviating inflammatory responses and protecting the host from acute and chronic inflammation.

The cumulative effect of cannabinoids on all cell populations of the immune system can be beneficial, when there is a need for immune suppression.

For example, in patients with autoimmune diseases such as multiple sclerosis, arthritis and lupus, or in those with septic shock, where the disease is caused by activated immune cells, targeting the immune cells via CB2 agonists may trigger apoptosis and act as anti-inflammatory therapy.

CB2 select agonists are not psychoactive and because CB2 is expressed primarily in immune cells, use of CB2 agonists could provide a novel therapeutic modality against autoimmune and inflammatory diseases.

In addition to the use of exogenous cannabinoids, in vivo manipulation of endocannabinoids may also offer novel treatment opportunities against cancer and autoimmune diseases.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005548/

Direct suppression of autoreactive lymphocytes in the central nervous system via the CB2 receptor.

The cannabinoid system is evolutionally conserved and is present in invertebrates and vertebrates. One of the best-studied cannabinoids is Δ9-tetrahydrocannabinol (THC), the predominant active component of Cannabis sativa or marijuana.

The marijuana plant has been exploited by humans since their early history and was used for centuries in Asian medicine to reduce the severity of pain, inflammation and asthma. However, only recently have the mechanisms of the medicinal properties of THC begun to be understood. This understanding is largely due to the identification and cloning of two cannabinoid receptors.

The cannabinoid system is now recognized as a regulator of both the nervous and immune systems.

Although marijuana has been used for centuries for the treatment of a variety of disorders, its therapeutic mechanisms are only now being understood.

The best-studied plant cannabinoid, delta9-tetrahydrocannabinol (THC), produced by Cannabis sativa and found in marijuana, has shown evidence of being immunosuppressive in both in vivo and in vitro.

These studies are theoretically in agreement with the suggestions of others that cannabinoid receptor agonists would be beneficial for the treatment of MS in humans.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219523/

Cannabidiol lowers incidence of diabetes in non-obese diabetic mice.

“Cannabidinoids are components of the Cannabis sativa (marijuana) plant that have been shown capable of suppressing inflammation and various aspects of cell-mediated immunity.

Cannabidiol (CBD), a non-psychoactive cannabinoid has been previously shown by us to suppress cell-mediatedautoimmune joint destruction in an animal model of rheumatoid arthritis.

We now report that CBD treatment significantly reduces the incidence of diabetes in NOD mice from an incidence of 86% in non-treated control mice to an incidence of 30% in CBD-treated mice…

Our results indicate that CBD can inhibit and delay destructive insulitis and inflammatory Th1-associated cytokine production in NOD mice resulting in a decreased incidence of diabetes possibly through an immunomodulatory mechanism shifting the immune response from Th1 to Th2 dominance.”

http://www.ncbi.nlm.nih.gov/pubmed/16698671