Acetaminophen Relieves Inflammatory Pain Through CB1 Cannabinoid Receptors in the Rostral Ventromedial Medulla.

Journal of Neuroscience

“Acetaminophen (paracetamol) is a widely used analgesic and antipyretic drug with only incompletely understood mechanisms of action.

Previous work, using models of acute nociceptive pain, indicated that analgesia by acetaminophen involves an indirect activation of CB1 receptors by the acetaminophen metabolite and endocannabinoid re-uptake inhibitor AM 404.  However, the contribution of the cannabinoid system to anti-hyperalgesia against inflammatory pain, the main indication of acetaminophen, and the precise site of the relevant CB1 receptors have remained elusive.

Here, we analyzed acetaminophen analgesia in mice of either sex with inflammatory pain and found that acetaminophen exerted a dose-dependent anti-hyperalgesic action, which was mimicked by intrathecally injected AM 404. Both compounds lost their anti-hyperalgesic activity in CB1-/- mice confirming the involvement of the cannabinoid system.

Our results indicate that the cannabinoid system contributes not only to acetaminophen analgesia against acute pain but also against inflammatory pain, and suggest that the relevant CB1 receptors reside in the RVM.

SIGNIFICANCE STATEMENT: Acetaminophen is a widely used analgesic drug with multiple but only incompletely understood mechanisms of action including a facilitation of endogenous cannabinoid signaling via one of its metabolites. Our present data indicate that enhanced cannabinoid signaling is also responsible for the analgesic effects of acetaminophen against inflammatory pain. Local injections of the acetaminophen metabolite AM 404 and of cannabinoid receptor antagonists as well as data from tissue specific CB1 receptor deficient mice suggest the rostral ventromedial medulla as an important site of the cannabinoid-mediated analgesia by acetaminophen.”

https://www.ncbi.nlm.nih.gov/pubmed/29167401

http://www.jneurosci.org/content/early/2017/11/22/JNEUROSCI.1945-17.2017

Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings.

European Journal of Pain

“Cannabinoids have a long record of recreational and medical use and become increasingly approved for pain therapy. This development is based on preclinical and human experimental research summarized in this review.

Cannabinoid CB1 receptors are widely expressed throughout the nociceptive system. Their activation by endogenous or exogenous cannabinoids modulates the release of neurotransmitters. This is reflected in antinociceptive effects of cannabinoids in preclinical models of inflammatory, cancer and neuropathic pain, and by nociceptive hypersensitivity of cannabinoid receptor-deficient mice.

Cannabis-based medications available for humans mainly comprise Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and nabilone.

During the last 10 years, six controlled studies assessing analgesic effects of cannabinoid-based drugs in human experimental settings were reported. An effect on nociceptive processing could be translated to the human setting in functional magnetic resonance imaging studies that pointed at a reduced connectivity within the pain matrix of the brain. However, cannabinoid-based drugs heterogeneously influenced the perception of experimentally induced pain including a reduction in only the affective but not the sensory perception of pain, only moderate analgesic effects, or occasional hyperalgesic effects. This extends to the clinical setting.

While controlled studies showed a lack of robust analgesic effects, cannabis was nearly always associated with analgesia in open-label or retrospective reports, possibly indicating an effect on well-being or mood, rather than on sensory pain. Thus, while preclinical evidence supports cannabinoid-based analgesics, human evidence presently provides only reluctant support for a broad clinical use of cannabinoid-based medications in pain therapy.

SIGNIFICANCE:

Cannabinoids consistently produced antinociceptive effects in preclinical models, whereas they heterogeneously influenced the perception of experimentally induced pain in humans and did not provide robust clinical analgesia, which jeopardizes the translation of preclinical research on cannabinoid-mediated antinociception into the human setting.”

https://www.ncbi.nlm.nih.gov/pubmed/29160600

http://onlinelibrary.wiley.com/doi/10.1002/ejp.1148/abstract?systemMessage=Wiley+Online+Library+usage+report+download+page+will+be+unavailable+on+Friday+24th+November+2017+at+21%3A00+EST+%2F+02.00+GMT+%2F+10%3A00+SGT+%28Saturday+25th+Nov+for+SGT+

Modulating the endocannabinoid pathway as treatment for peripheral neuropathic pain: a selected review of preclinical studies.

“Chemotherapy-induced neuropathic pain is a distressing and commonly occurring side effect of many commonly used chemotherapeutic agents, which in some cases may prevent cancer patients from being able to complete their treatment.

Cannabinoid based therapies have the potential to manage or even prevent pain associated with this syndrome.

Pre-clinical animal studies that investigate the modulation of the endocannabinoid system (endogenous cannabinoid pathway) are being conducted to better understand the mechanisms behind this phenomenon.

Five recent pre-clinical studies identified from Medline published between 2013 and 2016 were selected for review. All studies evaluated the effect of small-molecule agonists or antagonists on components of the endocannabinoid system in rats or mice, using cisplatin or paclitax-el-induced allodynia as a model of chemotherapy-induced neuropathic pain. Activation of the cannabinoid receptor-2 (CB-2) receptor by AM1710 blocked paclitaxel-induced mechanical and cold allodynia in one study.

Four studies investigating the activation of both cannabinoid receptor-1 (CB-1) and CB-2 receptors by dual-agonists (WIN55,21 and CP55,940), or by the introduction of inhibitors of endocannabinoid metabolisers (URB597, URB937, JZL184, and SA-57) showed reduction of chemotherapy-induced al-lodynia. In addition, their results suggest that anti-allodynic effects may also be mediated by additional receptors, including TRPV1 and 5-hydroxytryptamine (5-HT1A).

Pre-clinical studies demon-strate that the activation of endocannabinoid CB-1 or CB-2 receptors produces physiological effects in animal models, namely the reduction of chemotherapy-induced allodynia. These studies also provide in-sight into the biological mechanism behind the therapeutic utility of cannabis compounds in managing chemotherapy-induced neuropathic pain, and provide a basis for the conduct of future clinical studies in patients of this population.”

Associations between medical cannabis and prescription opioid use in chronic pain patients: A preliminary cohort study.

Image result for plos one

“Current levels and dangers of opioid use in the U.S. warrant the investigation of harm-reducing treatment alternatives.

PURPOSE:

A preliminary, historical, cohort study was used to examine the association between enrollment in the New Mexico Medical Cannabis Program (MCP) and opioid prescription use.

RESULTS:

By the end of the 21 month observation period, MCP enrollment was associated with 17.27 higher age- and gender-adjusted odds of ceasing opioid prescriptions (CI 1.89 to 157.36, p = 0.012), 5.12 higher odds of reducing daily prescription opioid dosages (CI 1.56 to 16.88, p = 0.007), and a 47 percentage point reduction in daily opioid dosages relative to a mean change of positive 10.4 percentage points in the comparison group (CI -90.68 to -3.59, p = 0.034). The monthly trend in opioid prescriptions over time was negative among MCP patients (-0.64mg IV morphine, CI -1.10 to -0.18, p = 0.008), but not statistically different from zero in the comparison group (0.18mg IV morphine, CI -0.02 to 0.39, p = 0.081). Survey responses indicated improvements in pain reduction, quality of life, social life, activity levels, and concentration, and few side effects from using cannabis one year after enrollment in the MCP (ps<0.001).

CONCLUSIONS:

The clinically and statistically significant evidence of an association between MCP enrollment and opioid prescription cessation and reductions and improved quality of life warrants further investigations on cannabis as a potential alternative to prescription opioids for treating chronic pain.” https://www.ncbi.nlm.nih.gov/pubmed/29145417

“In summary, if cannabis can serve as an alternative to prescription opioids for at least some patients, legislators and the medical community may want to consider medical cannabis programs as a potential tool for combating the current opioid epidemic.”   http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187795

“Study finds medical cannabis is effective at reducing opioid addiction”  http://news.unm.edu/news/study-finds-medical-cannabis-is-effective-at-reducing-opioid-addiction

Availability and approval of cannabis-based medicines for chronic pain management and palliative/supportive care in Europe: A survey of the status in the chapters of the European Pain Federation.

European Journal of Pain

“There is considerable public and political interest in the use of cannabis products for medical purposes.

METHODS:

The task force of the European Pain Federation (EFIC) conducted a survey with its national chapters representatives on the status of approval of all types of cannabis-based medicines, the covering of costs and the availability of a position paper of a national medical association on the use of medical cannabis for chronic pain and for symptom control in palliative/supportive care.

RESULTS:

Thirty-one out of 37 contacted councillors responded. Plant-derived tetrahydrocannabinol/cannabidiol (THC/CBD) oromucosal spray is approved for spasticity in multiple sclerosis refractory to conventional treatment in 21 EFIC chapters. Plant-derived THC (dronabinol) is approved for some palliative care conditions in four EFIC chapters. Synthetic THC analogue (nabilone) is approved for chemotherapy-associated nausea and vomiting refractory to conventional treatment in four EFIC chapters’. Eight EFIC chapters’ countries have an exceptional and six chapters an expanded access programme for medical cannabis. German and Israeli pain societies recommend the use of cannabis-based medicines as third-line drug therapies for chronic pain within a multicomponent approach. Conversely, the German medical association and a team of finish experts and officials do not recommend the prescription of medical cannabis due to the lack of high-quality evidence of efficacy and the potential harms.

CONCLUSIONS:

There are marked differences between the countries represented in EFIC in the approval and availability of cannabis-based products for medical use. EFIC countries are encouraged to collaborate with the European Medicines Agency to publish a common document on cannabis-based medicines.

SIGNIFICANCE:

There are striking differences between European countries in the availability of plant-derived and synthetic cannabinoids and of medical cannabis for pain management and for symptom control in palliative care and in the covering of costs by health insurance companies or state social security systems.”

https://www.ncbi.nlm.nih.gov/pubmed/29134767

http://onlinelibrary.wiley.com/doi/10.1002/ejp.1147/abstract

Cannabinoids offer alternatives to opioids for pain relief, experts say.

Image result for thebmj

“Alternatives to opioids can be used alone or in combination with opioids for pain relief, to help prevent medical exposure to narcotics being an entry point to misuse, said experts at a medical education forum in Washington, DC on 3 November.

Endocannabinoid compounds found in marijuana can greatly enhance the potency of opioids in relieving pain.

The synergy from using these drugs together can result in more effective pain relief from lower doses of opioids,”

https://www.ncbi.nlm.nih.gov/pubmed/29113969

http://www.bmj.com/content/359/bmj.j5140.full

Anti-Inflammatory Activity in Colon Models Is Derived from Δ9-Tetrahydrocannabinolic Acid That Interacts with Additional Compounds in Cannabis Extracts.

“Inflammatory bowel diseases (IBDs) include Crohn’s disease, and ulcerative colitis. Cannabis sativa preparations have beneficial effects for IBD patients. However, C. sativa extracts contain hundreds of compounds. Although there is much knowledge of the activity of different cannabinoids and their receptor agonists or antagonists, the cytotoxic and anti-inflammatory activity of whole C. sativa extracts has never been characterized in detail with in vitro and ex vivo colon models.

Material and Methods: The anti-inflammatory activity of C. sativa extracts was studied on three lines of epithelial cells and on colon tissue. C. sativa flowers were extracted with ethanol, enzyme-linked immunosorbent assay was used to determine the level of interleukin-8 in colon cells and tissue biopsies, chemical analysis was performed using high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance and gene expression was determined by quantitative real-time PCR.

Results: The anti-inflammatory activity of Cannabis extracts derives from D9-tetrahydrocannabinolic acid (THCA) present in fraction 7 (F7) of the extract. However, all fractions of C. sativa at a certain combination of concentrations have a significant increased cytotoxic activity. GPR55 receptor antagonist significantly reduces the anti-inflammatory activity of F7, whereas cannabinoid type 2 receptor antagonist significantly increases HCT116 cell proliferation. Also, cannabidiol (CBD) shows dose dependent cytotoxic activity, whereas anti-inflammatory activity was found only for the low concentration of CBD, and in a bell-shaped rather than dose-dependent manner. Activity of the extract and active fraction was verified on colon tissues taken from IBD patients, and was shown to suppress cyclooxygenase-2 (COX2) and metalloproteinase-9 (MMP9) gene expression in both cell culture and colon tissue.

Conclusions: It is suggested that the anti-inflammatory activity of Cannabis extracts on colon epithelial cells derives from a fraction of the extract that contains THCA, and is mediated, at least partially, via GPR55 receptor. The cytotoxic activity of the C. sativa extract was increased by combining all fractions at a certain combination of concentrations and was partially affected by CB2 receptor antagonist that increased cell proliferation. It is suggested that in a nonpsychoactive treatment for IBD, THCA should be used rather than CBD.”

Dronabinol Is a Safe Long-Term Treatment Option for Neuropathic Pain Patients.

Logo European Neurology

“Treatment of neuropathic pain (NP) symptoms associated with multiple sclerosis (MS) is frequently insufficient. Yet, cannabis is still rarely offered for treatment of pain. This clinical trial aimed at showing the positive benefit-risk ratio of dronabinol. Two hundred forty MS patients with central NP entered a 16-weeks placebo-controlled phase-III study followed by a 32-weeks open-label period. One hundred patients continued therapy for overall up to 119 weeks. Primary endpoint was change of pain intensity on the 11-point Numerical Rating Scale over a 16-weeks treatment period. Safety was assessed on the basis of adverse reactions (ARs), signs of dependency and abuse. Pain intensity during 16-weeks dronabinol and placebo treatment was reduced by 1.92 and 1.81 points without significant difference in between (p = 0.676). Although the proportion of patients with ARs was higher under dronabinol compared to placebo (50.0 vs. 25.9%), it decreased during long-term use of dronabinol (26%). No signs of drug abuse and only one possible case of dependency occurred. The trial results demonstrate that dronabinol is a safe long-term treatment option.” https://www.ncbi.nlm.nih.gov/pubmed/29073592

“Overall, this trial demonstrated the long-lasting therapeutic potential, the good tolerability and favourable safety profile of dronabinol – especially in terms of drug abuse and dependency. Based on the presented results, there is no special focus on the harm caused by dronabinol treatment. Although the statistical proof of efficacy for dronabinol versus placebo treatment is pending, physicians should consider the potential benefits of the multifactorial effects of dronabinol.” https://www.karger.com/Article/FullText/481089

Medical cannabis for the treatment of chronic pain and other disorders: misconceptions and facts.

Home

“Recently, many countries have enacted new cannabis policies, including decriminalization of cannabis possession, medical cannabis legalization, and legalization of recreational cannabis.  In this context, patients and their physicians have had an increasing number of conversations about the risks and benefits of cannabis.  While cannabis and cannabinoids continue to be evaluated as pharmacotherapy for medical conditions, currently, the best evidence exists for the following medical conditions: chronic pain, neuropathic pain, and spasticity resulting from multiple sclerosis.  We also reviewed the current state of evidence for cannabis and cannabinoids for a number of other medical conditions while addressing the potential acute and chronic effects of cannabis use, which are issues that physicians must consider before making an official recommendation on the use of medical cannabis to a patient.  As patient requests for medical cannabis increase, physicians must become knowledgeable on the science of medical cannabis and open to a discussion about why the patient feels that medical cannabis may be helpful to them.”

https://www.ncbi.nlm.nih.gov/pubmed/29067992

http://pamw.pl/en/issue/article/29067992

Efficacy, tolerability and safety of cannabis-based medicines for chronic pain management – An overview of systematic reviews.

European Journal of Pain

“Medicinal cannabis has already entered mainstream medicine in some countries.

Cannabis-based medicines undoubtedly enrich the possibilities of drug treatment of chronic pain conditions.

It remains the responsibility of the health care community to continue to pursue rigorous study of cannabis-based medicines to provide evidence that meets the standard of 21st century clinical care.”

https://www.ncbi.nlm.nih.gov/pubmed/29034533

http://onlinelibrary.wiley.com/doi/10.1002/ejp.1118/abstract