Activating Cannabinoid Receptor 2 Protects Against Diabetic Cardiomyopathy Through Autophagy Induction.

 Image result for frontiers in pharmacology

“Cannabinoid receptor 2 (CB2) has been reported to produce a cardio-protective effect in cardiovascular diseases such as myocardial infarction. Here in this study, we investigated the role of CB2 in diabetic cardiomyopathy (DCM) and its underlying mechanisms.

In conclusion, we initially demonstrated that activating CB2 produced a cardio-protective effect in DCM as well as cardiomyocytes under HG challenge through inducing the AMPK-mTOR-p70S6K signaling-mediated autophagy.”

https://www.ncbi.nlm.nih.gov/pubmed/30459625

“Taken together, in this study, we initially showed that activating CB2 produced a cardio-protective effect in DCM as well as cardiomyocytes under HG challenge through the induction of the AMPK-mTOR-p70S6K signaling-mediated autophagy process. We believe that the findings of this study might enhance our knowledge on the understanding of the pathogenesis and progression of DCM and provide a novel insight in the development of therapeutic strategies against DCM.”

https://www.frontiersin.org/articles/10.3389/fphar.2018.01292/full

Beta-caryophyllene alleviates diet-induced neurobehavioral changes in rats: The role of CB2 and PPAR-γ receptors.

Biomedicine & Pharmacotherapy

“Insulin resistance (IR) and obesity predispose diseases such as diabetes, cardiovascular and neurodegenerative disorders.

Beta-caryophyllene (BCP), a natural sesquiterpene, exerts neuroprotective, anxiolytic and antidepressant effects via its selective agonism to cannabinoid receptor 2 (CB2R). BCP was shown to have an anti-diabetic effect, however, the implication of CB2R is yet to be elucidated. A link between CB2R agonism and PPAR-γ activation has been discussed, but the exact mechanism is not well-defined.

This study was designed to examine the role of BCP in improving diet-induced metabolic (insulin resistance), neurobehavioral (anxiety, depression and memory deficit), and neurochemical (oxidative, inflammatory and neurotrophic factor) alterations in the prefrontal cortex of obese rats’ brain. The involvement of CB2R and/or PPAR-γ dependent activity was also investigated.

KEY RESULTS:

Beta-caryophyllene alleviated HFFD-induced IR, oxidative-stress, neuroinflammation and behavioral changes. The anxiolytic, anti-oxidant and anti-inflammatory effects of BCP were mediated by both PPAR-γ and CB2R. The effects of BCP on glycemic parameters seem to be CB2R-dependent with the non-significant role of PPAR-γ. Furthermore, BCP-evoked antidepressant and memory improvement are likely mediated only via CB2R, mainly by upregulation of PGC-1α and BDNF.

CONCLUSION:

This study suggests the potential effect of BCP in treating HFFD-induced metabolic and neurobehavioral alterations. BCP seems to activate PPAR-γ in a ligand-independent manner, via upregulation and activation of PGC-1α. The BCP activation of PPAR–γ seems to be CB2R-dependent.”

https://www.ncbi.nlm.nih.gov/pubmed/30469079

https://www.sciencedirect.com/science/article/pii/S0753332218370033?via%3Dihub

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”  https://www.ncbi.nlm.nih.gov/pubmed/18574142

Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation.

Brain, Behavior, and Immunity

“New neurons are continuously produced by neural stem cells (NSCs) within the adult hippocampus. Numerous diseases, including major depressive disorder and HIV-1 associated neurocognitive disorder, are associated with decreased rates of adult neurogenesis. A hallmark of these conditions is a chronic release of neuroinflammatory mediators by activated resident glia.

Recent studies have shown a neuroprotective role on NSCs of cannabinoid receptor activation. Yet, little is known about the effects of GPR55, a candidate cannabinoid receptor, activation on reductions of neurogenesis in response to inflammatory insult.

In the present study, we examined NSCs exposed to IL-1β in vitro to assess inflammation-caused effects on NSC differentiation and the ability of GPR55 agonists to attenuate NSC injury.

Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult.”

The endocannabinoid signaling system in cancer

Image result for trends in pharmacological sciences“Changes in lipid metabolism are intimately related to cancer. Several classes of bioactive lipids play roles in the regulation of signaling pathways involved in neoplastic transformation and tumor growth and progression.

The endocannabinoid system, comprising lipid-derived endocannabinoids, their G-protein-coupled receptors (GPCRs), and the enzymes for their metabolism, is emerging as a promising therapeutic target in cancer.

This report highlights the main signaling pathways for the antitumor effects of the endocannabinoid system in cancer and its basic role in cancer pathogenesis, and discusses the alternative view of cannabinoid receptors as tumor promoters.

We focus on new players in the antitumor action of the endocannabinoid system and on emerging crosstalk among cannabinoid receptors and other membrane or nuclear receptors involved in cancer. We also discuss the enzyme MAGL, a key player in endocannabinoid metabolism that was recently recognized as a marker of tumor lipogenic phenotype.”

https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(13)00044-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0165614713000448%3Fshowall%3Dtrue

Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain.

Neuroscience

“The endocannabinoid system (ECS) is involved in a considerable number of physiological processes in the Central Nervous System.

Recently, a modulatory role of cannabinoid receptors (CBr) and CBr agonists on the reduction of the N-methyl-d-aspartate receptor (NMDAr) activation has been demonstrated. Quinolinic acid (QUIN), an endogenous analog of glutamate and excitotoxic metabolite produced in the kynurenine pathway (KP), selectively activates NMDAr and has been shown to participate in different neurodegenerative disorders.

Since the early pattern of toxicity exerted by this metabolite is relevant to explain the extent of damage that it can produce in the brain, in this work we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) and other agonists (anandamide or AEA, and CP 55,940 or CP) on early markers of QUIN-induced toxicity in rat striatal cultured cells and rat brain synaptosomes.

WIN, AEA and CP exerted protective effects on the QUIN-induced loss of cell viability. WIN also preserved the immunofluorescent signals for neurons and CBr labeling that were decreased by QUIN. The QUIN-induced early mitochondrial dysfunction, lipid peroxidation and reactive oxygen species (ROS) formation were also partially or completely prevented by WIN pretreatment, but not when this CBr agonist was added simultaneously with QUIN to brain synaptosomes.

These findings support a neuroprotective and modulatory role of cannabinoids in the early toxic events elicited by agents inducing excitotoxic processes.”

https://www.ncbi.nlm.nih.gov/pubmed/25446347

https://www.sciencedirect.com/science/article/abs/pii/S0306452214009737?via%3Dihub

The Endocannabinoid System and Oligodendrocytes in Health and Disease.

 Image result for frontiers in neuroscience“Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.”

https://www.ncbi.nlm.nih.gov/pubmed/30416422

https://www.frontiersin.org/articles/10.3389/fnins.2018.00733/full

Cannabis, cannabinoids and the endocannabinoid system – is there therapeutic potential for inflammatory bowel disease?

Image result for jcc journal

“Cannabis sativa and its extracts have been used for centuries both medicinally and recreationally. There is accumulating evidence that exogenous cannabis and related cannabinoids improve symptoms associated with inflammatory bowel disease such as pain, loss of appetite, and diarrhoea. In vivo, exocannabinoids have been demonstrated to improve colitis, mainly in chemical models. Exocannabinoids signal through the endocannabinoid system, an increasingly understood network of endogenous lipid ligands and their receptors, together with a number of synthetic and degradative enzymes and the resulting products. Modulating the endocannabinoid system using pharmacological receptor agonists, genetic knockout models, or inhibition of degradative enzymes have largely shown improvements in colitis in vivo. Despite these promising experimental results, this has not translated into meaningful benefits for human IBD in the few clinical trials which have been conducted to date. The largest study to date being limited by poor medication tolerance due to the Δ9-tetrahydrocannabinol component. This review article synthesises the current literature surrounding the modulation of the endocannabinoid system and administration of exocannabinoids in experimental and human IBD. Findings of clinical surveys and studies of cannabis use in IBD are summarised. Discrepancies in the literature are highlighted together with identifying novel areas of interest.”

Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1-CB2 Heteroreceptor Complexes.

Image result for frontiers in pharmacology

“Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties.

The aim of this work was to investigate in parallel the binding properties of CBG to cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors and the effects of the compound on agonist activation of those receptors and of CB1-CB2 heteroreceptor complexes.

The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling.”

https://www.ncbi.nlm.nih.gov/pubmed/29977202

https://www.frontiersin.org/articles/10.3389/fphar.2018.00632/full

Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis.

Journal of Pharmacology and Experimental Therapeutics

“Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation.

Cannabinoid type-2 (CB2) receptor activation was shown to reduce the production of the monocyte chemotactic protein-2 (MCP-2) chemokine in polyinosinic-polycytidylic acid [poly-(I:C)]-stimulated human keratinocyte (HaCaT) cells, an in vitro model of allergic contact dermatitis (ACD).

We investigated if nonpsychotropic cannabinoids, such as cannabidiol (CBD), produced similar effects in this experimental model of ACD.

We show that in poly-(I:C)-stimulated HaCaT cells, CBD elevates the levels of AEA and dose-dependently inhibits poly-(I:C)-induced release of MCP-2, interleukin-6 (IL-6), IL-8, and tumor necrosis factor-α in a manner reversed by CB2 and TRPV1 antagonists 6-iodopravadoline (AM630) and 5′-iodio-resiniferatoxin (I-RTX), respectively, with no cytotoxic effect.

This is the first demonstration of the anti-inflammatory properties of CBD in an experimental model of ACD.”

https://www.ncbi.nlm.nih.gov/pubmed/29632236

http://jpet.aspetjournals.org/content/365/3/652.long

New insights on atherosclerosis: A cross-talk between endocannabinoid systems with gut microbiota.

Logo of jctr

“The incidence of atherosclerosis is increasing rapidly all over the world. Inflammatory processes have outstanding role in coronary artery disease (CAD) etiology and other atherosclerosis manifestations. Recently attentions have been increased about gut microbiota in many fields of medicine especially in inflammatory diseases like atherosclerosis. Ineffectiveness in gut barrier functions and subsequent metabolic endotoxemia (caused by rise in plasma lipopolysaccharide levels) is associated with low-grade chronic inflammation i.e. a recognized feature of atherosclerosis. Furthermore, the role of trimethylamine-N-oxide (TMAO), a gut bacterial metabolite has been suggested in atherosclerosis development. On the other hand, the effectiveness of gut microbiota modulation that results in TMAO reduction has been investigated. Moreover, considerable evidence supports a role for the endocannabinoid system (ECS) in atherosclerosis pathology which affects gut microbiota, but their effects on atherosclerosis are controversial. Therefore, we presented some evidence about the relationship between gut microbiota and ECS in atherosclerosis. We also presented evidences that gut microbiota modulation by pre/probiotics can have significant influence on the ECS.

Even though there are many questions which have been unanswered, studies demonstrated that mucosal barrier function disruption and subsequent gut microbiota-derived endotoxemia could contribute to cardiometabolic diseases pathogenesis. As well, number of studies revealed that TMAO in systemic circulation can activate macrophages which lead to cholesterol accumulation and subsequent foam cells formation in atherosclerotic lesions. On the other hand, accumulating evidence proposes that ECS involved in many physiological processes that are related to maintenance of gut-barrier function and inflammation regulation. Hence, although present literature review provides beneficial evidence in support of crosstalk between ECS and gut microbiota, additional studies are needed to clarify whether gut microbiota modulation can alter ECS tone and inflammation levels or not.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203867/