Review of the neurological benefits of phytocannabinoids.

Logo of sni

“Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS.

METHODS:

In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts.

RESULTS:

Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids.

CONCLUSIONS:

In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.”

https://www.ncbi.nlm.nih.gov/pubmed/29770251

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938896/

Medical Cannabis for Pediatric Moderate to Severe Complex Motor Disorders.

SAGE Journals

“A complex motor disorder is a combination of various types of abnormal movements that are associated with impaired quality of life (QOL). Current therapeutic options are limited. We studied the efficacy, safety, and tolerability of medical cannabis in children with complex motor disorder. This pilot study was approved by the institutional ethics committee.

Two products of cannabidiol (CBD) enriched 5% oil formulation of cannabis were compared: one with 0.25% δ-9-tetrahydrocannabinol (THC) 20:1 group, the other with 0.83% THC 6:1 group. Patients aged 1 to 17 years (n = 25) with complex motor disorder were enrolled. The assigned medication was administered for 5 months.

Significant improvement in spasticity and dystonia, sleep difficulties, pain severity, and QOL was observed in the total study cohort, regardless of treatment assignment. Adverse effects were rare and included worsening of seizures in 2 patients, behavioral changes in 2 and somnolence in 1.”

https://www.ncbi.nlm.nih.gov/pubmed/29766748

http://journals.sagepub.com/doi/abs/10.1177/0883073818773028?journalCode=jcna

Δ9-Tetrahydrocannabinol induces endocannabinoid accumulation in mouse hepatocytes: antagonism by Fabp1 gene ablation.

The Journal of Lipid Research “Phytocannabinoids, such as Δ9tetrahydrocannabinol (THC), bind and activate cannabinoid (CB) receptors, thereby “piggy-backing” on the same pathway’s endogenous endocannabinoids (ECs).

The recent discovery that liver fatty acid binding protein-1 (FABP1) is the major cytosolic “chaperone” protein with high affinity for both Δ9-THC and ECs suggests that Δ9-THC may alter hepatic EC levels.

Therefore, the impact of Δ9-THC or EC treatment on the levels of endogenous ECs, such as N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), was examined in cultured primary mouse hepatocytes from WT and Fabp1 gene-ablated (LKO) mice. Δ9-THC alone or 2-AG alone significantly increased AEA and especially 2-AG levels in WT hepatocytes. LKO alone markedly increased AEA and 2-AG levels. However, LKO blocked/diminished the ability of Δ9-THC to further increase both AEA and 2-AG. In contrast, LKO potentiated the ability of exogenous 2-AG to increase the hepatocyte level of AEA and 2-AG.

These and other data suggest that Δ9-THC increases hepatocyte EC levels, at least in part, by upregulating endogenous AEA and 2-AG levels.

This may arise from Δ9-THC competing with AEA and 2-AG binding to FABP1, thereby decreasing targeting of bound AEA and 2-AG to the degradative enzymes, fatty acid amide hydrolase and monoacylglyceride lipase, to decrease hydrolysis within hepatocytes.”

https://www.ncbi.nlm.nih.gov/pubmed/29414765

http://www.jlr.org/content/59/4/646

Medication overuse headache following repeated morphine, but not [INCREMENT]9-tetrahydrocannabinol administration in the female rat.

 

Image result for wolters kluwer

“The potential of [INCREMENT]-tetrahydrocannabinol (THC) as a treatment for migraine depends on antinociceptive efficacy with repeated administration.

Although morphine has good antinociceptive efficacy, repeated administration causes medication overuse headache (MOH) – a condition in which the intensity/frequency of migraine increases.

The present study compared the effect of repeated morphine or THC administration on the magnitude and duration of migraine-like pain induced by a microinjection of allyl isothiocyanate (AITC) onto the dura mater of female rats.

Acute administration of THC or morphine prevented AITC-induced depression of wheel running. This antinociception was maintained in rats treated repeatedly with THC, but not following repeated administration of morphine. Moreover, repeated morphine, but not THC administration, extended the duration of AITC-induced depression of wheel running.

These data indicate that tolerance and MOH develop rapidly to morphine administration. The lack of tolerance and MOH to THC indicates that THC may be an especially effective long-term treatment against migraine.”

The influence of THC:CBD oromucosal spray on driving ability in patients with multiple sclerosis-related spasticity.

Publication cover image

“Driving ability is a key function for the majority of patients with multiple sclerosis (MS) to help maintain daily interactions. Both physical and cognitive disability, as well as treatments, may affect the ability to drive. Spasticity is a common symptom associated with MS, and it may affect driving performance either directly or via the medications used to treat it.

In this article, we review the evidence relating the antispasticity medicine, Δ9-tetrahydrocannabinol:cannabidiol (THC:CBD) oromucosal spray (Sativex®), and its potential impact on driving performance.

The results from THC:CBD oromucosal spray driving studies and real-world registries did not show any evidence of an increase in motor vehicle accidents associated with THC:CBD oromucosal spray. The majority of patients reported an improvement in driving ability after starting THC:CBD oromucosal spray, and it was speculated that this may be related to reduced spasticity and/or better cognitive function.

THC:CBD oromucosal spray was shown not to impair driving performance.”

https://www.ncbi.nlm.nih.gov/pubmed/29761015

https://onlinelibrary.wiley.com/doi/abs/10.1002/brb3.962

Cannabinoids and gastrointestinal motility: Pharmacology, clinical effects, and potential therapeutics in humans.

Neurogastroenterology & Motility banner

“Cannabinoid agents and cannabis are frequently used for relief of diverse gastrointestinal symptoms.

PURPOSE:

The objective of this article is to increase the awareness of gastroenterologists to the effects of cannabinoids on gastrointestinal motility, as gastroenterologists are likely to encounter patients who are taking cannabinoids, or those with dysmotility that may be associated with cannabinoid mechanisms.

The non-selective cannabinoid agonist, dronabinol, retards gastric emptying and inhibits colonic tone and phasic pressure activity.

In summary, cannabinoid mechanisms and pharmacology are relevant to the current and future practice of clinical gastroenterology.”

https://www.ncbi.nlm.nih.gov/pubmed/29745439

https://onlinelibrary.wiley.com/doi/abs/10.1111/nmo.13370

Marijuana Use Is Not Associated With Progression to Advanced Liver Fibrosis in HIV/Hepatitis C Virus-coinfected Women.

Issue Cover

“Marijuana (hereafter “tetrahydrocannabinol [THC]”) use has been associated with liver fibrosis progression in retrospective analyses of patients with chronic hepatitis C (HCV). We studied long-term effects of THC on fibrosis progression in women coinfected with human immunodeficiency virus (HIV)/HCV enrolled in the Women’s Interagency HIV Study (WIHS).

CONCLUSIONS:

In this large cohort of HIV/HCV-coinfected women, THC was not associated with progression to significant liver fibrosis. Alcohol use was independently associated with liver fibrosis, and may better predict fibrosis progression in HIV/HCV-coinfected women.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967608/

https://academic.oup.com/cid/article/63/4/512/2595097

Activation of the Cannabinoid Type 2 Receptor by a Novel Indazole Derivative Normalizes the Survival Pattern of Lymphoblasts from Patients with Late-Onset Alzheimer’s Disease.

CNS Drugs

“Alzheimer’s disease is a multifactorial disorder for which there is no disease-modifying treatment yet.

CB2 receptors have emerged as a promising therapeutic target for Alzheimer’s disease because they are expressed in neuronal and glial cells and their activation has no psychoactive effects.

OBJECTIVE:

The aim of this study was to investigate whether activation of the CB2 receptor would restore the aberrant enhanced proliferative activity characteristic of immortalized lymphocytes from patients with late-onset Alzheimer’s disease. It is assumed that cell-cycle dysfunction occurs in both peripheral cells and neurons in patients with Alzheimer’s disease, contributing to the instigation of the disease.

METHODS:

Lymphoblastoid cell lines from patients with Alzheimer’s disease and age-matched control individuals were treated with a new, in-house-designed dual drug PGN33, which behaves as a CB2 agonist and butyrylcholinesterase inhibitor. We analyzed the effects of this compound on the rate of cell proliferation and levels of key regulatory proteins. In addition, we investigated the potential neuroprotective action of PGN33 in β-amyloid-treated neuronal cells.

RESULTS:

We report here that PGN33 normalized the increased proliferative activity of Alzheimer’s disease lymphoblasts. The compound blunted the calmodulin-dependent overactivation of the PI3K/Akt pathway, by restoring the cyclin-dependent kinase inhibitor p27 levels, which in turn reduced the activity of the cyclin-dependent kinase/pRb cascade. Moreover, this CB2 agonist prevented β-amyloid-induced cell death in neuronal cells.

CONCLUSION:

Our results suggest that the activation of CB2 receptors could be considered a useful therapeutic approach for Alzheimer’s disease.”

https://www.ncbi.nlm.nih.gov/pubmed/29736745

https://link.springer.com/article/10.1007%2Fs40263-018-0515-7

The Impact of Δ9-THC on the Psychological Symptoms of Anorexia Nervosa: A Pilot Study.

 Image result for Isr J Psychiatry Relat Sci.

“Δ9-Tetrahydrocannabinol (Δ9-THC) is the active compound of Cannabis sativa with appetite stimulating properties.

This study evaluated the effect of low doses of oral Δ9-THC on self-reported symptoms of patients suffering from chronic anorexia nervosa (AN).

The primary outcome was improvement in the way patients perceived their eating behavior.

Significant improvements were found in self reported body care, sense of ineffectiveness, asceticism and depression. There were no significant changes in BMI.

Δ9-THC may be an effective component in treating the psychological symptoms of AN.”

https://www.ncbi.nlm.nih.gov/pubmed/29735812

Enhanced endocannabinoid tone as a potential target of pharmacotherapy.

Cover image

“The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms.

Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids.

The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake.

To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound.

In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels.

Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.”

https://www.ncbi.nlm.nih.gov/pubmed/29729263

https://www.sciencedirect.com/science/article/pii/S0024320518302352