Cannabis and Its Secondary Metabolites: Their Use as Therapeutic Drugs, Toxicological Aspects, and Analytical Determination.

medicines-logo

“Although the medicinal properties of Cannabis species have been known for centuries, the interest on its main active secondary metabolites as therapeutic alternatives for several pathologies has grown in recent years. This potential use has been a revolution worldwide concerning public health, production, use and sale of cannabis, and has led inclusively to legislation changes in some countries. The scientific advances and concerns of the scientific community have allowed a better understanding of cannabis derivatives as pharmacological options in several conditions, such as appetite stimulation, pain treatment, skin pathologies, anticonvulsant therapy, neurodegenerative diseases, and infectious diseases. However, there is some controversy regarding the legal and ethical implications of their use and routes of administration, also concerning the adverse health consequences and deaths attributed to marijuana consumption, and these represent some of the complexities associated with the use of these compounds as therapeutic drugs. This review comprehends the main secondary metabolites of Cannabis, approaching their therapeutic potential and applications, as well as their potential risks, in order to differentiate the consumption as recreational drugs. There will be also a focus on the analytical methodologies for their analysis, in order to aid health professionals and toxicologists in cases where these compounds are present.”

Complete biosynthesis of cannabinoids and their unnatural analogues in yeast

Image result for nature journal

“Cannabis sativa L. has been cultivated and used around the globe for its medicinal properties for millennia. Some cannabinoids, the hallmark constituents of Cannabis, and their analogues have been investigated extensively for their potential medical applications. Certain cannabinoid formulations have been approved as prescription drugs in several countries for the treatment of a range of human ailments. However, the study and medicinal use of cannabinoids has been hampered by the legal scheduling of Cannabis, the low in planta abundances of nearly all of the dozens of known cannabinoids, and their structural complexity, which limits bulk chemical synthesis. Here we report the complete biosynthesis of the major cannabinoids cannabigerolic acid, Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid and cannabidivarinic acid in Saccharomyces cerevisiae, from the simple sugar galactose. To accomplish this, we engineered the native mevalonate pathway to provide a high flux of geranyl pyrophosphate and introduced a heterologous, multi-organism-derived hexanoyl-CoA biosynthetic pathway. We also introduced the Cannabis genes that encode the enzymes involved in the biosynthesis of olivetolic acid, as well as the gene for a previously undiscovered enzyme with geranylpyrophosphate:olivetolate geranyltransferase activity and the genes for corresponding cannabinoid synthases. Furthermore, we established a biosynthetic approach that harnessed the promiscuity of several pathway genes to produce cannabinoid analogues. Feeding different fatty acids to our engineered strains yielded cannabinoid analogues with modifications in the part of the molecule that is known to alter receptor binding affinity and potency. We also demonstrated that our biological system could be complemented by simple synthetic chemistry to further expand the accessible chemical space. Our work presents a platform for the production of natural and unnatural cannabinoids that will allow for more rigorous study of these compounds and could be used in the development of treatments for a variety of human health problems.”

https://www.nature.com/articles/s41586-019-0978-9

“Yeast can produce THC, CBD, novel cannabinoids”  https://www.upi.com/Science_News/2019/02/28/Yeast-can-produce-THC-CBD-novel-cannabinoids/4411551303863/

“Yeast produce low-cost, high-quality cannabinoids”  https://www.eurekalert.org/pub_releases/2019-02/uoc–ypl022419.php

“Engineered yeast can brew up the active ingredients in cannabis plants”  https://www.newscientist.com/article/2195103-engineered-yeast-can-brew-up-the-active-ingredients-in-cannabis-plants/

“High grade cannabis chemicals produced using brewing yeast”  https://www.independent.co.uk/news/science/cannabis-drug-produced-yeast-marijuana-thc-cbd-medicine-california-a8799576.html

Crystal Structure of the Human Cannabinoid Receptor CB2

Figure thumbnail fx1

“The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases. Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257’s unexpected opposing functional profile of CB2 antagonism versus CB1 agonism. Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.”
“Study reveals the structure of the 2nd human cannabinoid receptor”   HTTPS://MIPT.RU/ENGLISH/NEWS/STUDY_REVEALS_THE_STRUCTURE_OF_THE_2ND_HUMAN_CANNABINOID_RECEPTOR

Lung alveolar tissue destruction and protein citrullination in diesel exhaust exposed mouse lungs.

Basic & Clinical Pharmacology & Toxicology banner

“Humanity faces an increasing impact of air pollution worldwide, including threats to human health. Air pollutants prompt and promote chronic inflammation, tumourigenesis, autoimmune and other destructive processes in the human body.

Post-translational modification of proteins, e.g. citrullination, results from damaging attacks of pollutants, including smoking, air pollution and others, rendering host tissues immunogenic. Citrullinated proteins and citrullinating enzymes, deiminases, are more prevalent in patients with COPD and correlate with ongoing inflammation and oxidative stress.

In this study, we installed an in-house-designed diesel exhaust delivery and cannabidiol vaporization system where mice were exposed to relevant, urban traffic-related levels of diesel exhaust for 14 days and assessed integrity of alveolar tissue, gene expression shifts and changes in protein content in the lungs and other tissues of exposed mice. Systemic presence of modified proteins was also tested.

The protective effect of phytocannabinoids was investigated as well.

Data obtained in our study show subacute effects of diesel exhaust on mouse lung integrity and protein content. Emphysematous changes are documented in exposed mouse lungs. In parallel, increased levels of citrulline were detected in the alveolar lung tissue and peripheral blood of exposed mice.

Pretreatment with vaporized cannabidiol ameliorated some damaging effects.

Results reported hereby provide new insights into subacute lung tissue changes that follow diesel exhaust exposure and suggest possible dietary and/or other therapeutic interventions for maintaining lung health and healthy ageing.”

https://www.ncbi.nlm.nih.gov/pubmed/30801928

https://onlinelibrary.wiley.com/doi/abs/10.1111/bcpt.13213

Decreased Expression of Cannabinoid Receptors in the Eutopic and Ectopic Endometrium of Patients with Adenomyosis.

Image result for hindawi journal

“Adenomyosis is a common gynecologic benign disease that may have a life-long negative impact on women.

Previous studies have indicated that the endocannabinoid system may participate in the progress of endometriosis.

Our research aims to analyze the expression patterns of the typical cannabinoid receptors (CB1 and CB2), the main constituents of the endocannabinoid system, in endometrial samples derived from patients diagnosed as adenomyosis or not.

RESULTS:

In either the proliferative or the secretory phase, CB1 and CB2 protein and mRNA levels were both significantly lower in the eutopic and ectopic endometrium of adenomyosis when compared with normal endometrium. For women with adenomyosis, CB1 and CB2 protein and mRNA levels were much lower in the ectopic endometrium than the eutopic in both phases of the cycle. Both CB1 and CB2 protein and mRNA levels were increased during the secretory phase in normal endometrium, while CB1 lost its cyclic variation in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis.

CONCLUSION:

The decreased expression of CB1 and CB2 in the eutopic and ectopic endometrium from patients diagnosed as adenomyosis suggests that cannabinoid receptors may participate in the pathogenesis of adenomyosis.”

https://www.ncbi.nlm.nih.gov/pubmed/30800671

“In conclusion, we found a significant decrease in the cannabinoid receptors CB1 and CB2 in the eutopic and ectopic endometrium of patients with adenomyosis, regardless of the menstrual phase, suggesting that CB1 and CB2 participate in the pathogenesis of this condition.”

https://www.hindawi.com/journals/bmri/2019/5468954/

Effect of cannabis on weight and metabolism in first-episode non-affective psychosis: Results from a three-year longitudinal study.

Image result for sage journals

“Recent evidence indicates a protective effect of cannabis on weight gain and related metabolic alterations. However, there are no previous studies on the long-term longitudinal effects of cannabis on first-episode drug-naïve patients, which would thereby avoid the confounding effects of chronicity and previous treatment exposure.

We aimed to explore the effect of cannabis smoking on weight and lipid/glycaemic metabolic measures in a sample of first-episode non-affective psychosis patients.

RESULTS::

Cannabis users at baseline presented a lower weight ( F=14.85, p<0.001), body mass index ( F=13.14, p<0.001), total cholesterol ( F=4.85, p=0.028) and low-density lipoprotein-cholesterol ( F=6.26, p=0.013) compared to non-users. These differences were also observed after three years: weight ( F=8.07, p=0.005), body mass index ( F=4.66, p=0.032) and low-density lipoprotein-cholesterol ( F=3.91, p=0.049). Moreover, those patients discontinuing cannabis use presented a higher increase in weight ( F=2.98, p=0.052), body mass index ( F=2.73, p=0.067) and triglyceride-high-density lipoprotein ratio ( F=2.72, p=0.067) than the ‘non-users’ and ‘continuers’.

CONCLUSIONS::

The study suggests that cannabis use may produce a protective effect against weight gain and related metabolic alterations in psychosis.”

https://www.ncbi.nlm.nih.gov/pubmed/30702972

https://doi.org/10.1177/0269881118822173

DMH-cannabidiol, a cannabidiol analog with reduced cytotoxicity, inhibits TNF production by targeting NF-kB activity by activating A2A receptor and inhibiting p38.

Toxicology and Applied Pharmacology

“Cannabidiol (CBD) is a natural compound with psychoactive therapeutic properties well described. Conversely, the immunological effects of CBD are still poorly explored. In this study, the potential anti-inflammatory effects and underlying mechanisms of CBD and its analog Dimethyl-Heptyl-Cannabidiol (DMH-CBD) were investigated using RAW 264.7 macrophages. CBD and DMH-CBD suppressed LPS-induced TNF production and NF-kB activity in a concentration-dependent manner. Both compounds reduced the NF-kB activity in a μM concentration range: CBD (IC50 = 15 μM) and DMH-CBD (IC50 = 38 μM). However, the concentrations of CBD that mediated NF-kB inhibition were similar to those that cause cytotoxicity (LC50 = 58 μM). Differently, DMH-CBD inhibited the NF-kB activation without cytotoxic effects at the same concentrations, although it provokes cytotoxicity at long-term exposure. The inhibitory action of the DMH-CBD on NF-kB activity was not related to the reduction in IkBα degradation or either p65 (NF-kB) translocation to the nucleus, although it decreased p38 MAP kinase phosphorylation. Additionally, 8-(3-Chlorostyryl) caffeine (CSC), an A2Aantagonist, reversed the effect of DMH-CBD on NF-kB activity in a concentration-dependent manner. Collectively, our results demonstrated that CBD reduced the NF-kB activity at concentrations intimately associated with the reduction in cell viability, DMH-CBD reduce the NF-kB activity and by activating A2A receptors and inhibits p38 phosphorylation.”

https://www.ncbi.nlm.nih.gov/pubmed/30796934

https://www.sciencedirect.com/science/article/pii/S0041008X19300663?via%3Dihub

The Endocannabinoid System, Our Universal Regulator

Image result for journal of young investigators

“The endocannabinoid system (ECS) plays a very important role in the human body for our survival. This is due to its ability to play a critical role in maintaining the homeostasis of the human body, which encompasses the brain, endocrine, and immune system, to name a few. ECS is a unique system in multiple dimensions.

To begin with, it is a retrograde system functioning post- to pre-synapse, allowing it to be a “master regulator” in the body. Secondly, it has a very wide scope of influence due to an abundance of cannabinoid receptors located anywhere from immune cells to neurons. Finally, cannabinoids are rapidly synthesized and degraded, so they do not stay in the body for very long in high amounts, possibly enabling cannabinoid therapy to be a safer alternative to opioids or benzodiazepines. This paper will discuss how ECS functions through the regulation of neurotransmitter function, apoptosis, mitochondrial function, and ion-gated channels. The practical applications of the ECS, as well as the avenues for diseases such as epilepsy, cancer, amyotrophic lateral sclerosis (ALS), and autism, which have no known cure as of now, will be explored.

The ECS is one of the, if not the most, important systems in our body. Its role in the homeostatic function of our body is undeniable, and its sphere of influence is incredible. Additionally, it also plays a major role in apoptotic diseases, mitochondrial function, and brain function.

Its contribution is more than maintaining homeostasis; it also has a profound ability in regulation. Working in a retrograde fashion and with a generally inhibitory nature, ECS can act as a “kill switch.” However, it has been shown to play an inhibitory or stimulatory role based on the size of the influx of cannabinoids, resulting in a bimodal regulation. Furthermore, due to the nature of the rate of degradation of cannabinoids, it does not have as many long-term side effects as most of the current drugs on the market.

The ECS may not only provide answers for diseases with no known cures, but it could change the way we approach medicine. This system would allow us to change our focus from invasive pharmacological interventions (i.e. SSRIs for depression, benzodiazepines for anxiety, chemotherapies for cancer) to uncovering the mystery of why the body is failing to maintain homeostasis. Understanding the roles of ECS in these diseases confers a new direction for medicine which may eradicate the use of some of the less tolerable therapeutics.”

https://www.jyi.org/2018-june/2018/6/1/the-endocannabinoid-system-our-universal-regulator

The Association between Cannabis Product Characteristics and Symptom Relief

Scientific Reports

“Across product characteristics, only higher THC levels were independently associated with greater symptom relief and prevalence of positive and negative side effects. In contrast, CBD potency levels were generally not associated with significant symptom changes or experienced side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30804402

https://www.nature.com/articles/s41598-019-39462-1

“Notorious psychoactive chemical THC more important for therapeutic effects in cannabis than previously believed. Contrary to popular media-reports and scientific dogma, the psychoactive chemical, tetrahydrocannabinol or “THC,” showed the strongest correlation with therapeutic relief and far less evidence for the benefits of relying on the more socially acceptable chemical, cannabidiol or “CBD.””  https://news.unm.edu/news/notorious-psychoactive-chemical-thc-more-important-for-therapeutic-effects-in-cannabis-than-previously-believed

“THC more important for therapeutic effects in cannabis than previously believed”  https://medicalxpress.com/news/2019-02-thc-important-therapeutic-effects-cannabis.html

“THC found more important for therapeutic effects in cannabis than originally thought” https://www.sciencedaily.com/releases/2019/02/190226112353.htm

“Study: Patients Find More Relief In Marijuana‘s Physchoactive Compound THC Than In CBD.https://www.forbes.com/sites/javierhasse/2019/02/27/study-patients-find-more-relief-in-marijuanas-physchoactive-compound-thc-than-in-cbd/#384ee158717a

What are the psychological effects of using synthetic cannabinoids? A systematic review

 Image result for journal of psychopharmacology

“Synthetic cannabinoids are, typically, full agonists at the cannabinoid CB1 receptor, and therefore considerably more potent than natural cannabis and may have correspondingly more serious psychological effects.

The purpose of this study was to synthesise the available research on the psychological consequences of synthetic cannabinoid use.

 

Non-controlled, cross-sectional studies generally showed that synthetic cannabinoid users had lower performance on cognitive tasks and showed elevated symptomatology (e.g. paranoia) compared to both natural cannabis and non-cannabis users.

 

Acute synthetic cannabinoid use can result in a range of psychological outcomes and, when non-intoxicated, synthetic cannabinoid users appear to differ from natural cannabis and non-users on various affective and cognitive domains.”

https://www.ncbi.nlm.nih.gov/pubmed/30789300

https://journals.sagepub.com/doi/abs/10.1177/0269881119826592?journalCode=jopa