Biased Agonism of Three Different Cannabinoid Receptor Agonists in Mouse Brain Cortex

Image result for Front Pharmacol

“Cannabinoid receptors are able to couple to different families of G proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand.

The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, Δ9-THC, WIN55212-2, and ACEA in mouse brain cortex.

Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/osubunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand.

In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors.

Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095132/

The cannabinoid beta-caryophyllene (BCP) induces neuritogenesis in PC12 cells by a cannabinoid-receptor-independent mechanism.

Image result for chemico-biological interactions

“Beta-caryophyllene (BCP) is a phytocannabinoid whose neuroprotective activity has been mainly associated with selective activation of cannabinoid-type-2 (CB2) receptors, inhibition of microglial activation and decrease of inflammation.

Here, we addressed the potential of BCP to induce neuritogenesis in PC12 cells, a model system for primary neuronal cells that express trkA receptors, respond to NGF and do not express CB2 receptors.

We demonstrated that BCP increases the survival and activates the NGF-specific receptor trkA in NGF-deprived PC12 cells, without increasing the expression of NGF itself. The neuritogenic effect of BCP in PC12 cells was abolished by k252a, an inhibitor of the NGF-specific receptor trkA. Accordingly, BCP did not induce neuritogenesis in SH-SY5Y neuroblastoma cells, a neuronal model that does not express trkA receptors and do not respond to NGF.

Additionally, we demonstrated that BCP increases the expression of axonal-plasticity-associated proteins (GAP-43, synapsin and synaptophysin) in PC12 cells. It is known that these proteins are up-regulated by NGF in neurons and neuron-like cells, such as PC12 cells.

Altogether, these findings suggest that BCP activates trka receptors and induces neuritogenesis by a mechanism independent of NGF or cannabinoid receptors. This is the first study to show such effects of BCP and their beneficial role in neurodegenerative processes should be further investigated.”

https://www.ncbi.nlm.nih.gov/pubmed/27871898

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

“The oral intake of this dietary cannabinoid with vegetable food could be advantageous in the daily routine clinical practice over synthetic cannabinoid agonists.” http://www.europeanneuropsychopharmacology.com/article/S0924-977X(13)00302-7/fulltext

Endocannabinoid system in sexual motivational processes: is it a novel therapeutic horizon?

Image result for pharmacological research logo

“The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana’s psychoactive ingredient Δ9-tetrahydrocannabinol (Δ9-THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors.

For centuries, in addition to its recreational actions, several contradictory claims regarding the effects of Cannabis use in sexual functioning and behavior (e.g. aphrodisiac vs anti-aphrodisiac) of both sexes have been accumulated. The identification of Δ9-THC and later on, the discovery of the ECS have opened a potential therapeutic target for sexual dysfunctions, given the partial efficacy of current pharmacological treatment.

In agreement with the bidirectional modulation induced by cannabinoids on several behavioral responses, the endogenous cannabinoid AEA elicited biphasic effects on sexual behavior as well. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of several aspects of sexuality in preclinical and human studies, highlighting their therapeutic potential.”

https://www.ncbi.nlm.nih.gov/pubmed/27884725

“Cannabis As An Aphrodisiac? The Evidence Is Mounting”  https://www.civilized.life/articles/aphrodisiac-evidence-is-mounting/

Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor.

Image result for medicinal research reviews

“The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions.

A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years.

In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators.

A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists.

Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands.

This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators.

The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/27879006

Highest-resolution model to date of brain receptor behind marijuana’s high

“Researchers at UT Southwestern Medical Center report the most detailed 3-D structure to date of the brain receptor that binds and responds to the chemical at the root of marijuana’s high.

Their high-resolution structure of the human cannabinoid receptor 1 (CB1) and its binding site for the chemical tetrahydrocannabinol (THC) should lead to a better understanding of how marijuana affects the brain.

The research also could aid discovery of new treatments for conditions that target the receptor, said Dr. Daniel Rosenbaum, Assistant Professor of Biophysics and Biochemistry at UT Southwestern.”

https://www.sciencedaily.com/releases/2016/11/161116131935.htm

Bioactive spirans and other constituents from the leaves of Cannabis sativa f. sativa.

Image result for journal of asian natural products research

“In this paper, 17 compounds (1-17) were isolated from the leaves of Hemp (Cannabis sativa f. sativa). Among the isolates, two were determined to be new spirans: cannabispirketal (1), and α-cannabispiranol 4′-O-β-D-glucopyranose (2) by 1D and 2D NMR spectroscopy, LC-MS, and HRESIMS. The known compounds 7, 8, 10, 13, 15, and 16 were isolated from Hemp (C. sativa f. sativa) for the first time. Furthermore, compounds 8 and 13 were isolated from the nature for the first time. All isolated compounds were evaluated for cytotoxicity on different tissue-derived passage cancer cell lines through cell viability and apoptosis assay. Among these compounds, compounds 5, 9 and 16 exhibited a broad-spectrum antitumor effect via inhibiting cell proliferation and promoting apoptosis. These results obtained have provided valuable clues to the understanding of the cytotoxic profile for these isolated compounds from Hemp (C. sativa f. sativa).”

https://www.ncbi.nlm.nih.gov/pubmed/27848262

High-resolution crystal structure of the human CB1 cannabinoid receptor.

Image result for Nature journal

“The human cannabinoid G-protein-coupled receptors (GPCRs) CB1 and CB2 mediate the functional responses to the endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG), as well as the widely consumed plant (phyto)cannabinoid Δ9-tetrahydrocannabinol (THC)1. The cannabinoid receptors have been the targets of intensive drug discovery efforts owing to the therapeutic potential of modulators for controlling pain2, epilepsy3, obesity4, and other maladies. Although much progress has recently been made in understanding the biophysical properties of GPCRs, investigations of the molecular mechanisms of the cannabinoids and their receptors have lacked high-resolution structural data. We used GPCR engineering and lipidic cubic phase (LCP) crystallization to determine the structure of the human CB1 receptor bound to the inhibitor taranabant at 2.6 Å resolution. The extracellular surface of CB1, including the highly conserved membrane-proximal amino-terminal (N-terminal) region, is distinct from other lipid-activated GPCRs and forms a critical part of the ligand binding pocket. Docking studies further demonstrate how this same pocket may accommodate the cannabinoid agonist THC. Our CB1 structure provides an atomic framework for studying cannabinoid receptor function, and will aid the design and optimization of cannabinoid system modulators for therapeutic ends.”

Non-violent drug users should face no penalty—a call from the Global Commission on Drug Policy

Image result for thebmj

“We urgently need pragmatic reform to develop effective and humane drug policies, including regulated drug markets, because prohibition has failed, write Ruth Dreifuss and Pavel Bém

The failures of prohibition—the attempt to eliminate illicit drugs for non-medical purposes through measures such as criminalisation or militarisation—and other repressive drug strategies are well documented. Over the past 50 years, they have been unable to curb either supply or demand at global or local levels. In fact, drug use, production, and trafficking, and concern about the issue among the general public, grow ever higher, while prohibition continues to exact a tragic toll on individuals and societies. Effective and humane drug policies are needed more urgently than ever.

This urgency can be felt both at the local level, where cities struggle to cope with drug use directly, and at the international level, with growing criticism of an outdated drug control system built on three United Nations conventions. Even though these conventions do not specifically insist on harsh punishment for drug use, national interpretation has favoured prohibitive approaches, with many harmful consequences.

The commission takes this a logical step further and calls for governments to regulate all illicit drugs. This would curb a massive revenue stream for organised crime, worth an estimated $320bn (£260bn; €290bn).7 It would also allow further research to inform policy and facilitate restriction of drug use—for example, setting the age of the user, maximum quantities allowed for sale or possession, and where drugs can be used. And it could help to shift perceptions from considering drugs as inherently “evil” to a more pragmatic mindset in which scientific evidence, not ideology, drives drug policy.”

http://www.bmj.com/content/355/bmj.i5921

“British Medical Journal calls for legalisation of drugs”  http://www.independent.co.uk/news/uk/crime/war-on-drugs-british-medical-journal-heroin-cannabis-cocaine-a7417171.html

 “War on drugs has failed says one of the world’s top medical journals”  http://www.mirror.co.uk/news/uk-news/war-drugs-british-medical-journal-9260434

“The war on drugs has failed and doctors should lead calls for change, says BMJ”  http://medicalxpress.com/news/2016-11-war-drugs-doctors-bmj.html

“The war on drugs has failed: doctors should lead calls for drug policy reform”  http://www.bmj.com/content/355/bmj.i6067

Medical cannabis and mental health: A guided systematic review

Image result for sciencedirect

“This review considers the potential influences of the use of cannabis for therapeutic purposes (CTP) on areas of interest to mental health professionals, with foci on adult psychopathology and assessment. We identified 31 articles relating to the use of CTP and mental health, and 29 review articles on cannabis use and mental health that did not focus on use for therapeutic purposes. Results reflect the prominence of mental health conditions among the reasons for CTP use, and the relative dearth of high-quality evidence related to CTP in this context, thereby highlighting the need for further research into the harms and benefits of medical cannabis relative to other therapeutic options. Preliminary evidence suggests that CTP may have potential for the treatment of PTSD, and as a substitute for problematic use of other substances. Extrapolation from reviews of non-therapeutic cannabis use suggests that the use of CTP may be problematic among individuals with psychotic disorders. The clinical implications of CTP use among individuals with mood disorders are unclear. With regard to assessment, evidence suggests that CTP use does not increase risk of harm to self or others. Acute cannabis intoxication and recent CTP use may result in reversible deficits with the potential to influence cognitive assessment, particularly on tests of short-term memory.

Cannabis use does not appear to increase risk of harm to self or others.”

http://www.sciencedirect.com/science/article/pii/S0272735816300939

“Marijuana could help treat drug addiction, mental health, study suggests”  https://www.sciencedaily.com/releases/2016/11/161116102847.htm

“Marijuana may help combat substance abuse, mental health disorders”  http://www.medicalnewstoday.com/articles/314159.php

“Medical cannabis may help treat mental health problems and opioid addiction”  http://www.news-medical.net/news/20161116/Medical-cannabis-may-help-treat-mental-health-problems-and-opioid-addiction.aspx

The central cannabinoid receptor type-2 (CB2) and chronic pain.

Image result for international journal of neuroscience

“Cannabinoid receptor type-2 (CB2, CB2 Receptor, or CB2-R) mediates analgesia, via two mechanisms. CB2 receptors contained in peripheral immune tissue mediates analgesia by altering cytokine profiles, and thus has little adverse effects on central nervous systems. CB2 is also expressed in the neurons and glial cells of the Central Nervous System (CNS). This neuronal expression may also contribute to pain attenuation. The CB2 receptor has been proposed as a potential target in treating chronic pain of several etiologies.”

https://www.ncbi.nlm.nih.gov/pubmed/27842450