Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids.

“Cannabinoids and related drugs generate profound behavioral effects (such as analgesic effects) through activating CNR1 (cannabinoid receptor 1 [brain]). However, repeated cannabinoid administration triggers lysosomal degradation of the receptor and rapid development of drug tolerance, limiting the medical use of marijuana in chronic diseases.

Here we show that a protein involved in macroautophagy/autophagy (a conserved lysosomal degradation pathway), BECN2 (beclin 2), mediates cannabinoid tolerance by preventing CNR1 recycling and resensitization after prolonged agonist exposure, and deletion of Becn2 rescues CNR1 activity in mouse brain and conveys resistance to analgesic tolerance to chronic cannabinoids.

Overall, our findings demonstrate the functional link among autophagy, receptor signaling and animal behavior regulated by psychoactive drugs, and develop a new strategy to prevent tolerance and improve medical efficacy of cannabinoids by modulating the BECN2 interactome and autophagy activity.”

http://www.ncbi.nlm.nih.gov/pubmed/27305347

Indirect modulation of the endocannabinoid system by specific fractions of nutmeg total extract.

“Nutmeg [Myristica fragrans Houtt. (Myristicaceae)] has a long-standing reputation of psychoactivity. Anecdotal reports of nutmeg use as a cheap marijuana substitute, coupled to previous studies reporting a cannabimimetic-like action, suggest that nutmeg may interact with the endocannabinoid system.

The study provides the first piece of evidence that nutmeg interacts with the endocannabinoid system via inhibition of the endocannabinoid catabolizing enzymes. This mechanism provides insight into reported cannabis-like action as well as expands the potential therapeutic utility of nutmeg.”

http://www.ncbi.nlm.nih.gov/pubmed/27296774

Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

“Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported.

To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice.

Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition.

Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions.

Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear.”

http://www.ncbi.nlm.nih.gov/pubmed/27296273

Cannabidiol Modulates Fear Memory Formation through Interactions with Serotonergic Transmission in the Mesolimbic System.

“Emerging evidence suggests that the largest phytochemical component of cannabis, cannabidiol (CBD), may possess pharmacotherapeutic properties in the treatment of neuropsychiatric disorders.

CBD has been reported to functionally interact with both the mesolimbic dopamine (DA) and serotonergic (5-HT) receptor systems.

Our findings demonstrate a novel NAcVTA circuit responsible for the behavioral and neuronal effects of CBD within the mesolimbic system via functional interactions with serotonergic 5-HT1A receptor signalling.”

http://www.ncbi.nlm.nih.gov/pubmed/27296152

Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents.

“There is growing pressure for states and the federal government to legalize the use of cannabis products for medical purposes in the United States.

Sixteen states have legalized (or decriminalized possession of) products high in cannabidiol (CBD) and with restricted Δ9 -tetrahydrocannabinol (Δ9 -THC) content. In most of these states, the intent is for use in refractory epileptic seizures in children, but in a few states, the indications are broader.

The objectives of this review are to provide an overview of the pharmacology and toxicology of CBD; to summarize some of the regulatory, safety, and cultural issues relevant to the further exploitation of its antiepileptic or other pharmacologic activities; and to assess the current status and prospects for clinical development of CBD and CBD-rich preparations for medical use in the United States.

Unlike Δ9 -THC, CBD elicits its pharmacologic effects without exerting any significant intrinsic activity on the cannabinoid receptors (CB1 and CB2 ), whose activation results in the psychotropic effects characteristic of Δ9 -THC, and CBD possesses several pharmacologic activities that give it a high potential for therapeutic use.

CBD exhibits antiepileptic, anxiolytic, antipsychotic, and antiinflammatory properties.

In combination with Δ9 -THC, CBD has received regulatory approvals in several European countries and is currently under study in U.S. Food and Drug Administration-registered trials in the United States.

A number of states have passed legislation to allow for the use of CBD-rich, limited Δ9 -THC-content preparations of cannabis for certain pathologic conditions. CBD is currently being studied in several clinical trials and is at different stages of clinical development for various medical indications.

Judging from clinical findings reported so far, CBD and CBD-enriched preparations have great potential utility, but uncertainties regarding sourcing, long-term safety, abuse potential, and regulatory dilemmas remain.”

http://www.ncbi.nlm.nih.gov/pubmed/27285147

Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat.

“The ventral hippocampus (VH) has a high distribution of cannabinoid CB1 receptors which are important in modulating stress responses. Stress exposure activates the hypothalamic-pituitary-adrenal axis (HPA) which can impact hippocampal formation to change hippocampus-based memories.

The purpose of the present study was to determine the possible role of the VH cannabinoid CB1 receptors in stress-induced amnesia using a step-through passive avoidance procedure in male Wistar rats.

Taken together, it can be concluded that exposure to post-training inescapable stress impaired memory consolidation. The impairing effects of stress on memory retrieval may be mediated by the VH cannabinoid CB1 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27282634

Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing.

“Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing.

These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation.

Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/27268717

Medicinal cannabis: Principal cannabinoids concentration and their stability evaluated by a high performance liquid chromatography coupled to diode array and quadrupole time of flight mass spectrometry method.

“In the last few years, there has been a boost in the use of cannabis-based extracts for medicinal purposes, although their preparation procedure has not been standardized but rather decided by the individual pharmacists.

The present work describes the development of a simple and rapid high performance liquid chromatography method with UV detection (HPLC-UV) for the qualitative and quantitative determination of the principalcannabinoids (CBD-A, CBD, CBN, THC and THC-A) that could be applied to all cannabis-based medicinal extracts (CMEs) and easily performed by a pharmacist.

In order to evaluate the identity and purity of the analytes, a high-resolution mass spectrometry (HPLC-ESI-QTOF) analysis was also carried out. Full method validation has been performed in terms of specificity, selectivity, linearity, recovery, dilution integrity and thermal stability. Moreover, the influence of the solvent (ethyl alcohol and olive oil) was evaluated on cannabinoids degradation rate.

An alternative extraction method has then been proposed in order to preserve cannabis monoterpene component in final CMEs.”

http://www.ncbi.nlm.nih.gov/pubmed/27268223

Variability in Seed Traits in a Collection of Cannabis sativa L. Genotypes.

Logo of frontplantsci

“Cannabis sativa L. (hemp) is a wind-pollinated annual plant that originated in central Asia. Hemp, naturally, is a dioecious crop, but some monoecious cultivars have been obtained as a result of earlier breeding efforts.

Hemp is an ancient crop that has been cultivated worldwide until the early twentieth century, after which its cultivation declined.

Recently, interest in this multipurpose crop delivering fibers, shives, and seeds, has been renewed by an increasing demand not only for natural fibers but also for the high content and quality of seed protein and oil. Hemp seed contains 25–35% oil, 20–25% protein, 20–30% carbohydrates, 10–15% insoluble fiber, vitamins, and minerals such as phosphorus, potassium, magnesium, sulfur, and calcium.

The increasing demand for vegetable oils and proteins, along with current awareness about their nutritional and functional role in human diet, has made indispensable to characterize new plant sources. In this regard, hemp seed contains all the essential amino acids and fatty acids necessary to maintain healthy human life, and it might be a new good source of nutrients for both humans and livestock.

The principal value of hemp seed oil resides in its fatty acid composition. It contains the two dietary essential fatty acids: linoleic acid (LA; 18:2ω6) and the α-linolenic acid (ALA; 18:3ω3) in the ratio of 2.5–3:1, which has been claimed as ideal for human nutrition.

The seed of Cannabis sativa L. is an expanding source of proteins and oil for both humans and animals.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873519/

Proteomic characterization of hempseed (Cannabis Sativa L.).

“Hempseed is an underexploited non-legume protein-rich seed. Although its protein is well-known for its digestibility, essential amino acid composition, and useful techno-functional properties, a comprehensive proteome characterization is still lacking. The objective of this work was to fill this knowledge gap and provide information useful for a better exploitation of this seed in different food products.”

Image 1

“This paper presents an investigation on hempseed proteome.

The experimental approach, based on combinatorial peptide ligand libraries (CPLLs), SDS-PAGE separation, nLC-ESI-MS/MS identification, and database search, permitted identifying in total 181 expressed proteins. This very large number of identifications was achieved by searching in two databases: Cannabis sativa L. (56 gene products identified) and Arabidopsis thaliana(125 gene products identified). By performing a protein-protein association network analysis using the STRING software, it was possible to build the first interactomic map of all detected proteins, characterized by 137 nodes and 410 interactions. Finally, a Gene Ontology analysis of the identified species permitted to classify their molecular functions: the great majority is involved in the seed metabolic processes (41%), responses to stimulus (8%), and biological process (7%).”

http://www.sciencedirect.com/science/article/pii/S1874391916302354