Cannabis Indica speeds up Recovery from Coronavirus

ResearchGate“Cannabis Indica Speeds up Recovery from Coronavirus Severe acute respiratory syndrome (SARS) is a viral respiratory disease caused by the SARS coronavirus (SARS-CoV).

Cannabis indica speeds up recovery.

Recovered individuals do not infect others.

Cannabis indica resin is antiviral and inhibits cell proliferation.

It has a higher efficacy than any single compound like THC or CBD”

https://www.researchgate.net/publication/339746853_Cannabis_Indica_speeds_up_Recovery_from_Coronavirus

Oral Cannabidiol Does Not Convert to Δ8-THC or Δ9-THC in Humans: A Pharmacokinetic Study in Healthy Subjects.

View details for Cannabis and Cannabinoid Research cover image“Recent studies have suggested that cannabidiol (CBD) could interconvert into Delta-8- and Delta-9- tetrahydrocannabinol. Thus, we tested the plasma samples of 120 healthy human subjects (60 male and 60 female), 60 in fasting and the other 60 under normal feeding conditions after acute administration of an oral solution containing CBD 300 mg.

The results showed that THC was not detected in plasma after the administration of CBD, and those study participants did not present psychotomimetic effects.

The findings presented here are consistent with previous evidence suggesting that the oral administration of CBD in a corn oil formulation is a safe route for the administration of the active substance without bioconversion to THC in humans.”

https://www.ncbi.nlm.nih.gov/pubmed/32322680

https://www.liebertpub.com/doi/10.1089/can.2019.0024

A Guide to Targeting the Endocannabinoid System in Drug Design.

ijms-logo “The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.”

https://www.ncbi.nlm.nih.gov/pubmed/32316328

https://www.mdpi.com/1422-0067/21/8/2778

In Search of Preventative Strategies: Novel Anti-Inflammatory High-CBD Cannabis Sativa Extracts Modulate ACE2 Expression in COVID-19 Gateway Tissues

Preprints.org (@Preprints_org) | Twitter
“With the rapidly growing pandemic of COVID-19 caused by the new and challenging to treat zoonotic SARS-CoV2 coronavirus, there is an urgent need for new therapies and prevention strategies that can help curtail disease spread and reduce mortality. Inhibition of viral entry and thereby spread constitute plausible therapeutic avenues. Similar to other respiratory pathogens, SARS-CoV2 is transmitted through respiratory droplets, with potential for aerosol and contact spread. It uses receptor-mediated entry into the human host via angiotensin-converting enzyme II (ACE2) that is expressed in lung tissue, as well as oral and nasal mucosa, kidney, testes, and the gastrointestinal tract. Modulation of ACE2 levels in these gateway tissues may prove a plausible strategy for decreasing disease susceptibility.
Cannabis sativa, especially one high in the anti-inflammatory cannabinoid cannabidiol (CBD), has been proposed to modulate gene expression and inflammation and harbour anti-cancer and anti-inflammatory properties. Working under the Health Canada research license, we have developed over 800 new Cannabis sativa lines and extracts and hypothesized that high-CBD C. sativa extracts may be used to modulate ACE2 expression in COVID-19 target tissues. Screening C. sativa extracts using artificial human 3D models of oral, airway, and intestinal tissues, we identified 13 high CBD C. sativa extracts that modulate ACE2 gene expression and ACE2 protein levels. Our initial data suggest that some C. sativa extract down-regulate serine protease TMPRSS2, another critical protein required for SARS-CoV2 entry into host cells. While our most effective extracts require further large-scale validation, our study is crucial for the future analysis of the effects of medical cannabis on COVID-19.
The extracts of our most successful and novel high CBD C. sativa lines, pending further investigation, may become a useful and safe addition to the treatment of COVID-19 as an adjunct therapy. They can be used to develop easy-to-use preventative treatments in the form of mouthwash and throat gargle products for both clinical and at-home use. Such products ought to be tested for their potential to decrease viral entry via the oral mucosa. Given the current dire and rapidly evolving epidemiological situation, every possible therapeutic opportunity and avenue must be considered.”

Cannabinoids.

Cover of StatPearls“Cannabinoids, broadly speaking, are a class of biological compounds that bind to cannabinoid receptors. They are most frequently sourced from and associated with the plants of the Cannabis genus, including Cannabis sativaCannabis indica, and Cannabis ruderalis.

The earliest known use of cannabinoids dates back 5,000 years ago in modern Romania, while the documentation of the earliest medical dates back to around 400 AD. However, formal extraction, isolation, and structural elucidation of cannabinoids have taken place rather recently in the late 19th and early 20th centuries. Since then, numerous advancements have been made in further isolating naturally occurring cannabinoids, synthesizing artificial equivalents, and discovering the endogenous the endocannabinoid system in mammals, reptiles, fish, and birds.”

https://www.ncbi.nlm.nih.gov/pubmed/32310522

https://www.ncbi.nlm.nih.gov/books/NBK556062/

Promising in vitro antioxidant, anti-acetylcholinesterase and neuroactive effects of essential oil from two non-psychotropic Cannabis sativa L. biotypes.

Phytotherapy Research“The aim of this study was to compare the micro-morphological features of two different non-drug Cannabis sativa L. biotypes (Chinese accession G-309 and one fibrante variety) and to evaluate the phytochemical profile as well as some biological properties of the essential oils (EOs) obtained by hydrodistillation of dried flowering tops. After a micro-morphological evaluation by scanning electron microscopy, the phytochemical composition was analysed by GC-FID and GC-MS analyses.

Antioxidant and anti-acetylcholinesterase properties were investigated by several in vitro cell-free assays, while neuroactive effects were evaluated on mouse cortical neuronal as well as human iPS cell-derived central nervous system cells grown on MEA chips. Both EOs showed strong antioxidant properties mainly attributable to the high content of hydroxylated compounds as well as significant anti-acetylcholinesterase activities (IC50 74.64 and 57.31 μg/ml for Chinese accession and fibrante variety, respectively).

Furthermore, they showed a concentration-dependent inhibition of spontaneous electrical activity of human and mouse neuronal networks, with the fibrante variety, which showed the best activity (MFR, IC50 0.71 and 10.60 μg/ml, respectively). The observed biological activities could be due to a synergic effect between terpenes and phytocannabinoids, although in vivo studies, which clarify the molecular mechanism, are still lacking.”

https://www.ncbi.nlm.nih.gov/pubmed/32309898

https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6678

Cannabidiol (CBD).

Cover of StatPearls“Cannabis sativa or Indian hemp (subfamily Cannaboideae of family Moraceae) is an annual herbaceous plant, native to central and western Asia, cultivated for medicinal properties and for hemp, which is a natural textile fiber. The plant contains over 400 chemical compounds, of which approximately 80 biologically active chemical molecules. The most important cannabis compounds are cannabinoids formed by a terpene combined with resorcinol, or, according to a different nomenclature, by a benzopyranic ring system. There are about sixty cannabinoids, of which the most important psychoactive compound is tetrahydrocannabinol (TCH), in particular the isomer delta (Δ9-THC). Other identified compounds are cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN), cannabichromene (CBC), and olivetol. In addition to cannabinoids, the plant contains terpenoids such as beta-myrcene, beta-caryophyllene, d-limonene, linalool, piperidine, and p-cymene, as well as flavonoids such as quercetin.”

https://www.ncbi.nlm.nih.gov/pubmed/32310508

https://www.ncbi.nlm.nih.gov/books/NBK556048/

Association of State Marijuana Legalization Policies for Medical and Recreational Use With Vaping-Associated Lung Disease

Author Insights: Bariatric Surgery May Lead to Increases in ...“From June 2019 to January 2020, over 2500 cases of electronic cigarette (e-cigarette)– or vaping–associated lung injury (EVALI) were reported to the Centers for Disease Control and Prevention (CDC).

Some states have legalized marijuana and THC-containing products for recreational use. Many other states allow purchases for qualifying medical purposes. In remaining states, all forms of consumption and distribution are illegal, and individuals who use THC likely obtain it from the black market. If black-market THC products are responsible for EVALI, then case rates may be lower in recreational marijuana states.

The goal of this cross-sectional study was to measure whether states where marijuana is legal have lower rates of EVALI compared with states where it is illegal.

Recreational marijuana states had among the lowest EVALI rates of all states.

The data suggest that EVALI cases were concentrated in states where consumers do not have legal access to recreational marijuana dispensaries. This association was not driven by state-level differences in e-cigarette use, and EVALI case rates were not associated with state-level prevalence of e-cigarette use.

One possible inference from our results is that the presence of legal markets for marijuana has helped mitigate or may be protective against EVALI.”

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2763966

“Legal Marijuana Tied to Lower Rates of Vaping Illness”  https://www.medpagetoday.com/pulmonology/smoking/85807

MyD88-dependent and -independent signalling via TLR3 and TLR4 are differentially modulated by Δ9-tetrahydrocannabinol and cannabidiol in human macrophages.

Journal of Neuroimmunology“Toll-like receptors (TLRs) are sensors of pathogen-associated molecules that trigger inflammatory signalling in innate immune cells including macrophages. All TLRs, with the exception of TLR3, promote intracellular signalling via recruitment of the myeloid differentiation factor 88 (MyD88) adaptor, while TLR3 signals via Toll-Interleukin-1 Receptor (TIR)-domain-containing adaptor-inducing interferon (IFN)-β (TRIF) adaptor to induce MyD88-independent signalling. Furthermore, TLR4 can activate both MyD88-dependent and -independent signalling (via TRIF).

The study aim was to decipher the impact of the highly purified plant-derived (phyto) cannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), when delivered in isolation and in combination (1:1), on MyD88-dependent and -independent signalling in macrophages.

TLRs are attractive therapeutic targets given their role in inflammation and initiation of adaptive immunity, and data herein indicate that both CBD and THC preferentially modulate TLR3 and TLR4 signalling via MyD88-independent mechanisms in macrophages. This offers mechanistic insight into the role of phytocannabinoids in modulating cellular inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/32244040

https://www.jni-journal.com/article/S0165-5728(20)30057-6/pdf

“Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. Δ9-Tetrahydrocannabinol (THC) is a major constituent of Cannabis. The second major constituent of Cannabis extract is cannabidiol (CBD). Both THC and CBD have been shown to exert anti-inflammatory properties and to modulate the function of immune cells. In summary, our results show that although both THC and CBD exert anti-inflammatory effects, the two compounds engage different, although to some extent overlapping, intracellular pathways. Both THC and CBD decrease the activation of proinflammatory signaling.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804319/

Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant.

molecules-logo “Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS).

Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa.

However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself.

In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/32235333

https://www.mdpi.com/1420-3049/25/7/1567