Effects of cannabinoids on lithium-induced conditioned rejection reactions in a rat model of nausea.

“Marijuana has been reported to suppress nausea produced by chemotherapy treatment in human cancer patients.

… there is abundant evidence that cannabinoid agonists attenuate vomiting in emetic species…

The present experiments evaluated the potential of low doses of the cannabinoid agonists, delta-9-tetrahydrocannabinol (THC; 0.5 mg/kg, i.p.), and HU-210 (0.001 mg/kg and 0.01 mg/kg, i.p.), and the CB(1) antagonist SR-141716A in modulating the establishment and the expression of lithium-induced conditioned rejection reactions in rats.

These results indicate that the establishment and the expression of lithium-induced conditioned rejection reactions are suppressed by pretreatment with cannabinoid agents.”

http://www.ncbi.nlm.nih.gov/pubmed/12528012

http://www.thctotalhealthcare.com/category/nauseavomiting/

Simultaneous inhibition of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) shares discriminative stimulus effects with ∆9-THC in mice.

“Δ9 -tetrahydrocannabinol (∆9 -THC) is a cannabinoid CB1 /CB2 receptor agonist that produces therapeutic effects such as analgesia and anti-emetic effects…

Collectively, the current results show that pharmacological increases in endogenous AEA and 2-AG simultaneously through inhibition of FAAH and MAGL, respectively, mimics the discriminative stimulus effects of Δ9 -THC.”

http://jpet.aspetjournals.org/content/early/2015/02/24/jpet.115.222836.long

Cannabinoids suppress acute and anticipatory nausea in pre-clinical rat models of conditioned gaping.

“The sensation of nausea is one of the most debilitating human experiences. Current anti-emetic therapies are effective in reducing vomiting, but are less effective in reducing acute and delayed nausea and are completely ineffective in reducing anticipatory nausea.

Recent pre-clinical evidence using a selective rat model of nausea (conditioned gaping reactions) has revealed that cannabinoids have great promise as treatments for nausea and that their anti-nausea effects may be mediated by the interoceptive insular cortex.”

http://www.ncbi.nlm.nih.gov/pubmed/25691302

http://www.thctotalhealthcare.com/category/nauseavomiting/

Synthetic and Patented Cannabinoids

“Historically, laboratory synthesis of cannabinoids were often based on the structure of herbal cannabinoids, and a large number of analogs have been produced and tested, especially in a group led by Roger Adams as early as 1941 and later in a group led by Raphael Mechoulam.

Newer compounds are no longer related to natural cannabinoids or are based on the structure of the endogenous cannabinoids.

Synthetic cannabinoids are particularly useful in experiments to determine the relationship between the structure and activity of cannabinoid compounds, by making systematic, incremental modifications of cannabinoid molecules.

Medications containing natural or synthetic cannabinoids or cannabinoid analogs:

  • Dronabinol (Marinol), is Δ9-tetrahydrocannabinol (THC), used as an appetite stimulant, anti-emetic, and analgesic
  • Nabilone (Cesamet), a synthetic cannabinoid and an analog of Marinol. It is Schedule II unlike Marinol, which is Schedule III
  • Sativex, a cannabinoid extract oral spray containing THC, CBD, and other cannabinoids used for neuropathic pain and spasticity in Canada and Spain. Sativex develops whole-plant cannabinoid medicines
  • Rimonabant (SR141716), a selective cannabinoid (CB1) receptor antagonist used as an anti-obesity drug under the proprietary name Acomplia. It is also used for smoking cessation

Other notable synthetic cannabinoids include:

  • CP-55940, produced in 1974, this synthetic cannabinoid receptor agonist is many times more potent than THC
  • Dimethylheptylpyran
  • HU-210, about 100 times as potent as THC
  • HU-331 a potential anti-cancer drug derived from cannabidiol that specifically inhibits topoisomerase II.
  • SR144528, a CB2 receptor antagonists
  • WIN 55, a potent cannabinoid receptor agonist
  • JWH-133, a potent selective CB2 receptor agonist
  • Levonantradol (Nantrodolum), an anti-emetic and analgesic but not currently in use in medicine”

http://www.news-medical.net/health/Synthetic-and-Patented-Cannabinoids.aspx

A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol.

“This study examines the current knowledge of physiological and clinical effects of tetrahydrocannabinol (THC) and cannabidiol (CBD) and presents a rationale for their combination in pharmaceutical preparations. Cannabinoid and vanilloid receptor effects as well as non-receptor mechanisms are explored, such as the capability of THC and CBD to act as anti-inflammatory substances independent of cyclo-oxygenase (COX) inhibition.

CBD is demonstrated to antagonise some undesirable effects of THC including intoxication, sedation and tachycardia, while contributing analgesic, anti-emetic, and anti-carcinogenic properties in its own right.

In modern clinical trials, this has permitted the administration of higher doses of THC, providing evidence for clinical efficacy and safety for cannabis based extracts in treatment of spasticity, central pain and lower urinary tract symptoms in multiple sclerosis, as well as sleep disturbances, peripheral neuropathic pain, brachial plexus avulsion symptoms, rheumatoid arthritis and intractable cancer pain. Prospects for future application of whole cannabis extracts in neuroprotection, drug dependency, and neoplastic disorders are further examined.

The hypothesis that the combination of THC and CBD increases clinical efficacy while reducing adverse events is supported.”

http://www.ncbi.nlm.nih.gov/pubmed/16209908

A molecular link between the active component of marijuana and Alzheimer’s disease pathology.

“A link between the endocannabinoid system and Alzheimer’s disease has been discovered which has provided a new therapeutic target for the treatment of patients suffering from Alzheimer’s disease. These studies have demonstrated the ability of cannabinoids to provide neuroprotection against β-amyloid peptide (Aβ) toxicity.

Here, we demonstrate that the active component of marijuana, Δ9-tetrahydrocannabinol (THC), competitively inhibits the enzyme acetylcholinesterase (AChE) as well as prevents AChE-induced amyloid β-peptide (Aβ) aggregation, the key pathological marker of Alzheimer’s disease. 

 Compared to currently approved drugs prescribed for the treatment of Alzheimer’s disease, THC is a considerably superior inhibitor of Aβ aggregation, and this study provides a previously unrecognized molecular mechanism through which cannabinoid molecules may directly impact the progression of this debilitating disease.

Since the characterization of the Cannabis sativa-produced cannabinoid, Δ9-tetrahydrocannabinol (THC), in the 1960’s,1 this natural product has been widely explored as an anti-emetic, anti-convulsive, anti-inflammatory, and analgesic.”

Read more: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562334/

 

Cannabinoids Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Inhibit the Lipopolysaccharide-activated NF-κB and Interferon-β/STAT Proinflammatory Pathways in BV-2 Microglial Cells

“Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. Δ9-Tetrahydrocannabinol (THC)is a major constituent of Cannabis and serves as an agonist of the cannabinoid receptors CB1 and CB2.

The second major constituent of Cannabis extract is cannabidiol (CBD). CBD lacks the psychoactive effects that accompany the use of THC. Moreover, CBD was demonstrated to antagonize some undesirable effects of THC, including intoxication, sedation, and tachycardia, while sharing neuroprotective, anti-oxidative, anti-emetic, and anti-carcinogenic properties. Both THC and CBD have been shown to exert anti-inflammatory properties and to modulate the function of immune cells…

In summary, our results show that although both THC and CBD exert anti-inflammatory effects, the two compounds engage different, although to some extent overlapping, intracellular pathways. Both THC and CBD decrease the activation of proinflammatory signaling…

 The cannabinoids by moderating or disrupting these signaling networks may show promise as anti-inflammatory agents.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804319/