Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis.

Image result for Fitoterapia journal

“This study was aimed to investigate whether treatment with purified cannabidiol (CBD) may counteract the development of experimental multiple sclerosis (MS), by targeting the PI3K/Akt/mTOR pathway.

Our results showed a clear downregulation of the PI3K/Akt/mTOR pathway following EAE induction. CBD treatment was able to restore it, increasing significantly the phosphorylation of PI3K, Akt and mTOR. Also, an increased level of BNDF in CBD-treated mice seems to be involved in the activation of PI3K/Akt/mTOR pathway.

In addition, our data demonstrated that therapeutic efficacy of CBD treatment is due to reduction of pro-inflammatory cytokines, like IFN-γ and IL-17 together with an up-regulation of PPARγ. Finally, CBD was found to promote neuronal survival by inhibiting JNK and p38 MAP kinases.

These results provide an interesting discovery about the regulation of the PI3K/Akt/mTOR pathway by cannabidiol administration, that could be a new potential therapeutic target for MS management.”

https://www.ncbi.nlm.nih.gov/pubmed/27890794

Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia.

Image result for Prog Neuropsychopharmacol Biol Psychiatry.

“This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice.

Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21).

Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO.

In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels.

CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals.

Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.”

https://www.ncbi.nlm.nih.gov/pubmed/27889412

Biased Agonism of Three Different Cannabinoid Receptor Agonists in Mouse Brain Cortex

Image result for Front Pharmacol

“Cannabinoid receptors are able to couple to different families of G proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand.

The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, Δ9-THC, WIN55212-2, and ACEA in mouse brain cortex.

Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/osubunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand.

In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors.

Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095132/

The cannabinoid beta-caryophyllene (BCP) induces neuritogenesis in PC12 cells by a cannabinoid-receptor-independent mechanism.

Image result for chemico-biological interactions

“Beta-caryophyllene (BCP) is a phytocannabinoid whose neuroprotective activity has been mainly associated with selective activation of cannabinoid-type-2 (CB2) receptors, inhibition of microglial activation and decrease of inflammation.

Here, we addressed the potential of BCP to induce neuritogenesis in PC12 cells, a model system for primary neuronal cells that express trkA receptors, respond to NGF and do not express CB2 receptors.

We demonstrated that BCP increases the survival and activates the NGF-specific receptor trkA in NGF-deprived PC12 cells, without increasing the expression of NGF itself. The neuritogenic effect of BCP in PC12 cells was abolished by k252a, an inhibitor of the NGF-specific receptor trkA. Accordingly, BCP did not induce neuritogenesis in SH-SY5Y neuroblastoma cells, a neuronal model that does not express trkA receptors and do not respond to NGF.

Additionally, we demonstrated that BCP increases the expression of axonal-plasticity-associated proteins (GAP-43, synapsin and synaptophysin) in PC12 cells. It is known that these proteins are up-regulated by NGF in neurons and neuron-like cells, such as PC12 cells.

Altogether, these findings suggest that BCP activates trka receptors and induces neuritogenesis by a mechanism independent of NGF or cannabinoid receptors. This is the first study to show such effects of BCP and their beneficial role in neurodegenerative processes should be further investigated.”

https://www.ncbi.nlm.nih.gov/pubmed/27871898

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

“The oral intake of this dietary cannabinoid with vegetable food could be advantageous in the daily routine clinical practice over synthetic cannabinoid agonists.” http://www.europeanneuropsychopharmacology.com/article/S0924-977X(13)00302-7/fulltext

Application of carbon nanotubes as the carriers of the cannabinoid, 2-arachidonoylglycerol: Towards a novel treatment strategy in colitis.

Image result for life sciences journal

“Treatment of colitis has remained a major clinical challenge.

The cannabinoid, 2-arachidonoyglycerol (2-AG), has shown beneficial effects in colitis, however, poor solubility or rapid hydrolysis may limit its efficiency. According to the high biocompatibility of carbon nanotubes (CNTs) and their ability for controlled drug delivery, we aimed to prepare multi-walled CNTs-2-AG (MWCNTs-2-AG) complex in order to improve the pharmacological profile of 2-AG and evaluate the therapeutic potential of this nanocomplex in a rat model of colitis.

Aminated MWCNTs and MWCNTs-2-AG complex exhibited significantly lower cytotoxicity than acidified MWCNTs. Once daily intrarectal application of MWCNTs-2-AG complex (containing 2mg/kg of 2-AG) 2days before and 8days after the induction of colitis effectively reduced the macroscopic and microscopic injuries, malondialdehyde, tumour necrosis factor-α, and interlukin-1β concentrations, and myeloperoxidase activity. While, free 2-AG (2mg/kg), and acidified or aminated MWCNTs showed no beneficial effects.

SIGNIFICANCE:

Amino-functionalized MWCNTs appear as the suitable carriers for 2-AG which provide a sustained concentration for this cannabinoid leading to the promising therapeutic effects in the experimental colitis.”

https://www.ncbi.nlm.nih.gov/pubmed/27888115

A systematic review of the effect of cannabidiol on cognitive function: Relevance to schizophrenia.

Image result for neuroscience & biobehavioral reviews

“Cognitive impairment is a core symptom domain of schizophrenia, neurological disorders and substance abuse. It is characterised by deficits in learning, memory, attention and executive functioning and can severely impact daily living.

Antipsychotic drugs prescribed to treat schizophrenia provide limited cognitive benefits and novel therapeutic targets are required. Cannabidiol (CBD), a component of the cannabis plant, has anti-inflammatory and antipsychotic-like properties; however, its ability to improve cognitive impairment has not been thoroughly explored. The aim of this systematic review was to evaluate preclinical and clinical literature on the effects of CBD in cognitive domains relevant to schizophrenia.

CBD improves cognition in multiple preclinical models of cognitive impairment, including models of neuropsychiatric (schizophrenia), neurodegenerative (Alzheimer’s disease), neuro-inflammatory (meningitis, sepsis and cerebral malaria) and neurological disorders (hepatic encephalopathy and brain ischemia). To-date, there is one clinical investigation into the effects of CBD on cognition in schizophrenia patients, with negative results for the stroop test. CBD attenuates Δ9-THC-induced cognitive deficits.

 

The efficacy of CBD to improve cognition in schizophrenia cannot be elucidated due to lack of clinical evidence; however, given the ability of CBD to restore cognition in multiple studies of impairment, further investigation into its efficacy in schizophrenia is warranted. Potential mechanisms underlying the efficacy of CBD to improve cognition are discussed.”

https://www.ncbi.nlm.nih.gov/pubmed/27884751

Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor.

Image result for medicinal research reviews

“The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions.

A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years.

In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators.

A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists.

Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands.

This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators.

The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/27879006

Cannabidiol as a Potential New Type of an Antipsychotic. A Critical Review of the Evidence

Logo of frontpharmacol

“There is urgent need for the development of mechanistically different and less side-effect prone antipsychotic compounds.

The endocannabinoid system has been suggested to represent a potential new target in this indication.

Although, results from animal studies are inconsistent to a certain extent and seem to depend on behavioral paradigms, treatment duration and experimental conditions applied, cannabidiol has shown antipsychotic properties in both rodents and rhesus monkeys.

After some individual treatment attempts, the first randomized, double-blind controlled clinical trial demonstrated that in acute schizophrenia cannabidiol exerts antipsychotic properties comparable to the antipsychotic drug amisulpride while being accompanied by a superior, placebo-like side effect profile.

As the clinical improvement by cannabidiol was significantly associated with elevated anandamide levels, it appears likely that its antipsychotic action is based on mechanisms associated with increased anandamide concentrations.

The antipsychotic potential of cannabidiol has been investigated in various behavioral paradigms and different animal models of aspects of schizophrenia.

Although the results were partially inconsistent, they indicate that cannabidiol treatment ameliorates impairments of PPI, social interaction behavior and cognition in rodents and rhesus monkeys.

In addition, individual treatment attempts as well as one randomized, double-blind clinical study, demonstrated the antipsychotic potential of cannabidiol and its superior side effect profile compared to conventional antipsychotics. In addition, a recently conducted clinical trial investigating cannabidiol as an add-on medication showed promising results, although these have not yet been published in a peer reviewed process.

Obviously more clinical trials are needed to substantiate the current findings, and in particular to investigate long-term efficacy and safety in larger cohorts.

However, cannabidiol seems to represent a mechanistically different and less side-effect prone antipsychotic compound for the treatment of schizophrenia, even though the underlying pharmacological mechanisms are still under debate.

Nevertheless, the association between increased anandamide levels and reduced psychotic symptoms in schizophrenic patients treated with cannabidiol, points to a potentially new antipsychotic mechanism of action involving anandamide.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099166/

Cannabidiol Mellows Out Resurgent Sodium Current

“Cannabidiol has received abundant media attention as a potential therapy for intractable epilepsy, based mainly on anecdotal evidence.

These findings suggest that cannabidiol could be exerting its anticonvulsant effects, at least in part, through its actions on voltage-gated sodium channels, and resurgent current may be a promising therapeutic target for the treatment of epilepsy syndromes.”

http://www.epilepsycurrents.org/doi/full/10.5698/1535-7511-16.6.399

Anti-excitotoxic effects of cannabidiol are partly mediated by enhancement of NCX2 and NCX3 expression in animal model of cerebral ischemia.

Image result for Eur J Pharmacol.

“Excitotoxicity and imbalance of sodium and calcium homeostasis trigger pathophysiologic processes in cerebral ischemia which can accelerate neuronal death.

Neuroprotective role of cannabidiol (CBD), one of the main non-psychoactive phytocannabinoids of the cannabis plant, has attracted attention of many researchers in the neurodegenerative diseases studies.

The present investigation was designed to determine whether cannabidiol can alleviate the severity of ischemic damages and if it is able to exert its anti-excitotoxic effects through sodium and calcium regulation.

The present results indicate that administration of cannabidiol (100 and 200 ng/rat) in the MCAO-induced cerebral ischemia caused a remarkable reduction in neurological deficit, infarction, brain edema, and BBB permeability in comparison with the vehicle group. Up-regulation of NCX2 and NCX3 in cannabidiol-received groups was also observed.

These findings support the view that the reduction of ischemic injuries elicited by cannabidiol can be at least partly due to the enhancement of NCX protein expression and its cerebro-protective role in those cerebral territories supplied by MCA.”

https://www.ncbi.nlm.nih.gov/pubmed/27856160