Medical Marijuana in the Pediatric Population With Epilepsy—What You Should Know

Journal of Pediatric Health Care Home

“This article discusses the controversial but promising topic of medical marijuana (MM) use in the pediatric population with epilepsy. Included is the importance of MM throughout history, the pharmacodynamics and pharmacokinetics, and a literature review that provides anecdotal evidence of the positive effect MM has on children suffering from seizures. From this literature review, dosage for treatment and management is provided. Also discussed is the recent FDA-approved pharmaceutical grade CBD product, Epidiolex, for treatment of two pediatric-onset seizure syndromes, Lennox-Gastaut and Dravet. Clinical implications regarding adverse side effects of MM use are also discussed. The aim of this article is to arm providers with contemporary knowledge on the risks and benefits of MM use in the pediatric population with epilepsy, which may boost their skills and confidence in educating and advocating for children with seizures. This novel, ever-changing medication is in the forefront of history and the news, making this topic especially important for review.”

l-α-Lysophosphatidylinositol (LPI) aggravates myocardial ischemia/reperfusion injury via a GPR55/ROCK-dependent pathway.

Pharmacology Research & Perspectives banner

“The phospholipid l-α-lysophosphatidylinositol (LPI), an endogenous ligand for GPR55, is elevated in patients with acute coronary syndrome, and a GPR55 antagonist cannabidiol (CBD) reduces experimental ischemia/reperfusion (I/R) injury.”

https://www.ncbi.nlm.nih.gov/pubmed/31149342

https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1002/prp2.487

The pharmacological reduction of hippocampal neurogenesis attenuates the protective effects of cannabidiol on cocaine voluntary intake.

Addiction Biology banner“The administration of cannabidiol has shown promising evidence in the treatment of some neuropsychiatric disorders, including cocaine addiction. However, little information is available as to the mechanisms by which cannabidiol reduces drug use and compulsive seeking.

We investigated the role of adult hippocampal neurogenesis in reducing cocaine voluntary intake produced by repeated cannabidiol treatment in mice.

Cannabidiol (20 mg/kg) reduced cocaine self-administration behaviour acquisition and total cocaine intake and enhanced adult hippocampal neurogenesis.

The present study confirms that adult hippocampal neurogenesis is one of the mechanisms by which cannabidiol lowers cocaine reinforcement and demonstrates the functional implication of adult hippocampal neurogenesis in cocaine voluntary consumption in mice.

Such findings highlight the possible use of cannabidiol for developing new pharmacotherapies to manage cocaine use disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31162770

https://onlinelibrary.wiley.com/doi/abs/10.1111/adb.12778

Should Oncologists Recommend Cannabis?

“Cannabis is a useful botanical with a wide range of therapeutic potential. Global prohibition over the past century has impeded the ability to study the plant as medicine. However, delta-9-tetrahydrocannabinol (THC) has been developed as a stand-alone pharmaceutical initially approved for the treatment of chemotherapy-related nausea and vomiting in 1986. The indication was expanded in 1992 to include treatment of anorexia in patients with the AIDS wasting syndrome. Hence, if the dominant cannabinoid is available as a schedule III prescription medication, it would seem logical that the parent botanical would likely have similar therapeutic benefits. The system of cannabinoid receptors and endogenous cannabinoids (endocannabinoids) has likely developed to help us modulate our response to noxious stimuli. Phytocannabinoids also complex with these receptors, and the analgesic effects of cannabis are perhaps the best supported by clinical evidence. Cannabis and its constituents have also been reported to be useful in assisting with sleep, mood, and anxiety. Despite significant in vitro and animal model evidence supporting the anti-cancer activity of individual cannabinoids-particularly THC and cannabidiol (CBD)-clinical evidence is absent. A single intervention that can assist with nausea, appetite, pain, mood, and sleep is certainly a valuable addition to the palliative care armamentarium. Although many healthcare providers advise against the inhalation of a botanical as a twenty-first century drug-delivery system, evidence for serious harmful effects of cannabis inhalation is scant and a variety of other methods of ingestion are currently available from dispensaries in locales where patients have access to medicinal cannabis. Oncologists and palliative care providers should recommend this botanical remedy to their patients to gain first-hand evidence of its therapeutic potential despite the paucity of results from randomized placebo-controlled clinical trials to appreciate that it is both safe and effective and really does not require a package insert.”

https://www.ncbi.nlm.nih.gov/pubmed/31161270

https://link.springer.com/article/10.1007%2Fs11864-019-0659-9

Biosynthesis of cannflavins A and B from Cannabis sativa L.

Phytochemistry

“In addition to the psychoactive constituents that are typically associated with Cannabis sativa L., there exist numerous other specialized metabolites in this plant that are believed to contribute to its medicinal versatility. This study focused on two such compounds, known as cannflavin A and cannflavin B. These prenylated flavonoids specifically accumulate in C. sativa and are known to exhibit potent anti-inflammatory activity in various animal cell models. However, almost nothing is known about their biosynthesis. Using a combination of phylogenomic and biochemical approaches, an aromatic prenyltransferase from C. sativa (CsPT3) was identified that catalyzes the regiospecific addition of either geranyl diphosphate (GPP) or dimethylallyl diphosphate (DMAPP) to the methylated flavone, chrysoeriol, to produce cannflavins A and B, respectively. Further evidence is presented for an O-methyltransferase (CsOMT21) encoded within the C. sativa genome that specifically converts the widespread plant flavone known as luteolin to chrysoeriol, both of which accumulate in C. sativa. These results therefore imply the following reaction sequence for cannflavins A and B biosynthesis: luteolin ► chrysoeriol ► cannflavin A and cannflavin B. Taken together, the identification of these two unique enzymes represent a branch point from the general flavonoid pathway in C. sativa and offer a tractable route towards metabolic engineering strategies that are designed to produce these two medicinally relevant Cannabis compounds.”

https://www.ncbi.nlm.nih.gov/pubmed/31151063

https://www.sciencedirect.com/science/article/pii/S0031942218303819?via%3Dihub

“U of G Researchers First to Unlock Access to Pain Relief Potential of Cannabis”  https://news.uoguelph.ca/2019/07/u-of-g%E2%80%AFresearchers-first-to-unlock-access-to-pain%E2%80%AFrelief%E2%80%AFpotential-of-cannabis%E2%80%AF/

“Scientists unlock the secrets of marijuana’s pain-relief potential, study says” HTTPS://WWW.NEWSOBSERVER.COM/NEWS/NATION-WORLD/NATIONAL/ARTICLE233045517.HTML

Cannabidiol, cannabinol and their combinations act as peripheral analgesics in a rat model of myofascial pain.

Archives of Oral Biology

“This study investigated whether local intramuscular injection of non-psychoactive cannabinoids, cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC) and their combinations can decrease nerve growth factor (NGF)-induced masticatory muscle sensitization in female rats.

RESULTS:

In behavioral experiments, CBD (5 mg/ml) or CBN (1 mg/ml) decreased NGF-induced mechanical sensitization. Combinations of CBD/CBN induced a longer-lasting reduction of mechanical sensitization than either compound alone. No significant change in mechanical withdrawal threshold was observed in the contralateral masseter muscles and no impairment of motor function was found with the inverted screen test after any of the treatments. Consistent with behavioral results, CBD (5 mg/ml), CBN (1 mg/ml) and the combination of CBD/CBN (1:1 mg/ml) increased the mechanical threshold of masseter muscle mechanoreceptors. However, combining CBD/CBN (5:1 mg/ml) at a higher ratio reduced the duration of this effect. This may indicate an inhibitory effect of higher concentrations of CBD on CBN.

CONCLUSIONS:

These results suggest that peripheral application of these non-psychoactive cannabinoids may provide analgesic relief for chronic muscle pain disorders such as temporomandibular disorders and fibromyalgia without central side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/31158702

https://www.sciencedirect.com/science/article/pii/S0003996919302249?via%3Dihub

Prolonged Cannabidiol Treatment Lacks on Detrimental Effects on Memory, Motor Performance and Anxiety in C57BL/6J Mice.

Image result for frontier in behavioral neuroscience“The Cannabis plant contains more than 100 currently known phytocannabinoids. Regarding the rising consumption of the non-psychotropic phytocannabinoid cannabidiol (CBD) in people’s everyday life (e.g., beauty products, food and beverages), the importance of studies on the influence of CBD on healthy humans and rodents is evident. Therefore, the behavioral profile of CBD was investigated with a battery of behavioral tests, including motor, anxiety, and memory tests after prolonged CBD treatment. Adult C57Bl/6J wildtype (WT) mice were daily intraperitoneally injected with 20 mg/kg CBD for 6 weeks starting at two different points of ages (3 months and 5 months) to compare the influence of prolonged CBD treatment with a washout period (former group) to the effects of long term CBD treatment (current group). Our results show that CBD treatment does not influence motor performance on an accelerating Rotarod test, while it also results in a lower locomotor activity in the open field (OF). No influence of CBD on spatial learning and long term memory in the Morris Water Maze (MWM) was observed. Memory in the Novel Object Recognition test (NORT) was unaffected by CBD treatment. Two different anxiety tests revealed that CBD does not affect anxiety behavior in the Dark-Light Box (DLB) and OF test. Although, anxiety is altered by current CBD treatment in the Elevated Plus Maze (EPM). Moreover, CBD-treated C57Bl/6J mice showed an unaltered acoustic startle response (ASR) compared to vehicle-treated mice. However, current CBD treatment impairs prepulse inhibition (PPI), a test to analyze sensorimotor gating. Furthermore, prolonged CBD treatment did not affect the hippocampal neuron number. Our results demonstrate that prolonged CBD treatment has no negative effect on the behavior of adult C57Bl/6J mice.”

https://www.ncbi.nlm.nih.gov/pubmed/31133833

https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00094/full

Synthetic, non-intoxicating 8,9-dihydrocannabidiol for the mitigation of seizures.

 Scientific Reports“There can be a fine line between therapeutic intervention and substance abuse, and this point is clearly exemplified in herbal cannabis and its products. Therapies involving cannabis have been the treatment of last resort for some cases of refractory epilepsy, and this has been among the strongest medical justifications for legalization of marijuana. In order to circumvent the narcotic effects of Δ9-tetrahydrocannabinol (THC), many studies have concentrated on its less intoxicating isomer cannabidiol (CBD). However, CBD, like all natural cannabinoids, is a controlled substance in most countries, and its conversion into THC can be easily performed using common chemicals. We describe here the anticonvulsant properties of 8,9-dihydrocannibidiol (H2CBD), a fully synthetic analogue of CBD that is prepared from inexpensive, non-cannabis derived precursors. H2CBD was found to have effectiveness comparable to CBD both for decreasing the number and reducing the severity of pentylenetetrazole-induced seizures in rats. Finally, H2CBD cannot be converted by any reasonable synthetic route into THC, and thus has the potential to act as a safe, noncontroversial drug for seizure mitigation.”

https://www.ncbi.nlm.nih.gov/pubmed/31123271

https://www.nature.com/articles/s41598-019-44056-y

[Medicinal cannabis].

Image result for Ned Tijdschr Geneeskd.

“The use of cannabis products for medical purposes is rapidly increasing in the Netherlands. Studies suggest that these products have positive effects in the treatment of chronic neuropathic pain, multiple-sclerosis-related spasticity, certain epilepsy syndromes and chemotherapy-related nausea and vomiting.”

https://www.ncbi.nlm.nih.gov/pubmed/31120212

Age-related differences in Δ⁹-tetrahydrocannabinol-induced antinociception in female and male rats.

Cover image for Experimental and Clinical Psychopharmacology

“Given the use of cannabis as an analgesic by a broadening age range of patients, the aim of this study was to determine whether the antinociceptive effects of Δ9-tetrahydrocannabinol (THC) differ by age.

On the tail withdrawal test, THC was significantly more effective in middle-aged adult than in young adult rats and significantly less effective in adolescent than in young adult rats.

Sex differences in THC’s antinociceptive effects were consistent across the 3 ages examined, with greater THC effects observed in females than males of each age. Age-related differences in THC’s locomotor-suppressing effect were also observed, with the greatest effect in young adult female rats. Serum THC levels were slightly higher in adolescent than in young adult rats, and levels of the active metabolites 11-OH-THC and cannabinol, as well as the inactive metabolite 11-nor-9-carboxy-THC, did not differ between adolescent and young adult rats.

These results suggest that the pain-relieving effects of THC may be more limited in adolescents than in adults and that these age-related differences in THC effect are not attributable to differential absorption or metabolism of THC.”

https://www.ncbi.nlm.nih.gov/pubmed/31120286

https://psycnet.apa.org/doiLanding?doi=10.1037%2Fpha0000257