Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury

Heart and Circulatory Physiology

“CANNABINOIDS ARE NATURAL and synthetic compounds structurally or pharmacologically related to the constituents of the plant Cannabis sativa or to the endogenous agonists (endocannabinoids) of the cannabinoid CB1 and CB2 receptors.

Cannabidiol (CBD) is a major cannabinoid constituent of Cannabis.

In contrast to tetrahydrocannabinol, CBD binds very weakly to CB1 and CB2 receptors. Contrary to most cannabinoids, CBD does not induce psychoactive or cognitive effects.

CBD has been shown to have anti-inflammatory properties. CBD (together with tetrahydrocannabinol) has been successfully tested in a few preliminary human trials related to autoimmune diseases…

Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling.

Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts.

Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo.

Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.”

http://ajpheart.physiology.org/content/293/6/H3602

Cannabinoid system as a potential target for drug development in the treatment of cardiovascular disease.

“Although cannabinoids have been recreationally employed for thousands of years, it was not until the discovery of their specific receptors, in the early nineties, that the molecular basis of cannabinoid activity have began to be understood.

Growing research in this field has demonstrated not only that the action of cannabinoids in mammals is mainly receptor-mediated, but also that endogenous cannabinoids, such as anandamide, are produced, metabolized, and taken up across the cell membrane through a facilitated uptake process.

The exogenous administration of cannabinoids, as well as the manipulation of their endogenous levels have been related to a variety of effects, such as analgesia, (temporary) impairment of cognition and learning, appetite enhancement and peripheral vasodilation.

Hence, the endocannabinoid system, including the CB1 and CB2 receptors, the metabolizing enzyme fatty acid amide hydrolase and the anandamide transporter, is a potential target for the development of novel therapeutic drugs in the treatment of various conditions, such as pain, feeding disorders and vascular disease among others.

Although most of the research in the field of cannabinoids has been focused on their effects in the central nervous system, a growing line of evidence indicates that cannabinoids can also play a major role in the control of physiopathological functions in the cardiovascular system.

In this context, endocannabinoids have been proposed as novel possible hypotensive agents, and have been involved in the hypotension observed in septic shock, acute myocardial infarction and cirrhosis. In addition, a protective role for endocannabinoids has been described in ischemia.”

http://www.ncbi.nlm.nih.gov/pubmed/15320476

[Cardiovascular effects of cannabinoids].

“The psychoactive properties of cannabinoids, the biologically active constituents of the marijuana plant, have long been recognized. Recent research has revealed that cannabinoids elicit not only neurobehavioral, and immunological, but also profound cardiovascular effects.

Similar effects can be elicited by the endogenous ligand arachidonyl ethanolamine (anandamide) and 2-arachidonoyl-glycerol.

The biological effects of cannabinoids are mediated by specific receptors.

Two cannabinoid receptors have been identified so far: CB1-receptors are expressed by different cells of the brain and in peripheral tissues, while CB2-receptors were found almost exclusively in immune cells.

Through the use of a selective CB1 receptor antagonist and CB1 receptor-knockout mice the hypotensive and bradycardic effects of cannabinoids in rodents could be attributed to activation of peripheral CB1 receptors. In hemodynamic studies using the radioactive microsphere technique in anesthetized rats, cannabinoids were found to be potent CB1-receptor dependent vasodilators in the coronary and cerebrovascular beds.

Recent findings implicate the endogenous cannabinoid system in the pathomechanism of haemorrhagic, endotoxic and cardiogenic shock.

Finally, there is evidence that the extreme mesenteric vasodilation, portal hypertension and systemic hypotension present in advanced liver cirrhosis are also mediated by the endocannabinoid system.

These exciting, recent research developments indicate that the endogenous cannabinoid system plays an important role in cardiovascular regulation, and pharmacological manipulation of this system may offer novel therapeutic approaches in a variety of pathological conditions.”

Ligand activation of cannabinoid receptors attenuates hypertrophy of neonatal rat cardiomyocytes.

“Endocannabinoids are bioactive amides, esters, and ethers of long-chain polyunsaturated fatty acids.

Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries.

In conclusion, CB-13 inhibits cardiomyocyte hypertrophy through AMPK-eNOS signaling and may represent a novel therapeutic approach to cardioprotection.”

http://www.ncbi.nlm.nih.gov/pubmed/24979612

6B.09: EFFECT OF CANNABINOID RECEPTOR ACTIVATION ON ABERRANT MITOCHONDRIAL BIOENERGETICS IN HYPERTROPHIED CARDIAC MYOCYTES.

“We recently reported that activation of endocannabinoid receptors attenuates cardiac myocyte hypertrophy. Mitochondrial dysfunction has emerged as a critical determinant of aberrant myocyte energy production in cardiac hypertrophy. Thus, we determined endocannabinoid influence on mitochondrial function in the hypertrophied cardiac myocyte…

The cardioprotective actions of liganded cannabinoid receptors extend to the mitochondrial level. Therefore, a cannabinoid-based treatment for cardiac disease remains a potential therapeutic strategy that warrants further study.”

http://www.ncbi.nlm.nih.gov/pubmed/26102932

CB1 cannabinoid receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia.

“Cannabinoid receptor type 1 (CB1R) plays an important role in the development of myocardial hypertrophy and fibrosis-2 pathological features of uremic cardiomyopathy. However, it remains unknown whether CB1R is involved in the pathogenesis of uremic cardiomyopathy.

Here, we aimed to elucidate the role of CB1R in the development of uremic cardiomyopathy via modulation of Akt signalling…

CB1R inhibition exerts anti-fibrotic effects via modulation of Akt signaling in H9c2 myofibroblasts.

Therefore, the development of drugs targeting CB1R may have therapeutic potential in the treatment of uremic cardiomyopathy.”

Emerging targets in treating pain.

“Chronic pain poses an enormous socioeconomic burden for the more than 30% of people who suffer from it, costing over $600 billion per year in the USA. In recent years, there has been a surge in preclinical and clinical research endeavors to try to stem this epidemic. Preclinical studies have identified a wide array of potential targets, with some of the most promising translational research being performed on novel opioid receptors, cannabinoid receptors, selective ion channel blockers, cytokine inhibitors, nerve growth factor inhibitors, N-methyl-D-aspartate receptor antagonists, glial cell inhibitors, and bisphosphonates.

SUMMARY:

There are many obstacles for the development of effective medications to treat chronic pain, including the inherent challenges in identifying pathophysiological mechanisms, the overlap and multiplicity of pain pathways, and off-target adverse effects stemming from the ubiquity of drug target receptor sites and the lack of highly selective receptor ligands. Despite these barriers, the number and diversity of potential therapies have continued to grow, to include disease-modifying and individualized drug treatments.”

http://www.ncbi.nlm.nih.gov/pubmed/26087270

http://www.thctotalhealthcare.com/category/pain-2/

Role of the Endocannabinoid System in Diabetes and Diabetic Complications.

“Increasing evidence suggests that an overactive endocannabinoid system (ECS) may contribute to the development of diabetes by promoting energy intake and storage, impairing both glucose and lipid metabolism, and by exerting pro-apoptotic effects in pancreatic β cells, and by facilitating inflammation in pancreatic islets.

Furthermore, hyperglycemia associated with diabetes has also been implicated in triggering perturbations of the ECS amplifying the above mentioned pathological processes, eventually culminating in a vicious circle.

Compelling evidence from preclinical studies indicates that the ECS also influences diabetes-induced oxidative stress, inflammation, fibrosis, and subsequent tissue injury in target organs for diabetic complications.

In this review, we provide an update on the contribution of the ECS to the pathogenesis of diabetes and diabetic microvascular (retinopathy, nephropathy, and neuropathy) and cardiovascular complications. The therapeutic potential of targeting the ECS is also discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/26076890#

http://www.thctotalhealthcare.com/category/diabetes/

Pharmacologic effects of cannabidiol on acute reperfused myocardial infarction in rabbits: evaluated with 3.0T cardiac magnetic resonance imaging and histopathology.

“Cannabidiol (CBD) has anti-inflammatory effects.

We explored its therapeutic effects on cardiac ischemia-reperfusion injury with an experimental imaging platform…

Compared to controls, CBD treatment improved systolic wall thickening, significantly increased blood flow in the AAR, significantly decreased microvascular obstruction, increased the PDR by 1.7-fold, lowered the AMI-core/AAR ratio, and increased the MSI.

These improvements were associated with reductions in serum cTnI, cardiac leukocyte infiltration, and myocellular apoptosis.

Thus, CBD therapy reduced AMI size and facilitated restoration of LV function.

We demonstrated that this experimental platform has potential theragnostic utility.”

http://www.ncbi.nlm.nih.gov/pubmed/26065843

In vivo inflammation imaging using a CB2R-targeted near infrared fluorescent probe.

“Chronic inflammation is considered as a critical cause of a host of disorders, such as cancer, rheumatoid arthritis, atherosclerosis, and neurodegenerative diseases…

Imaging tools that can specifically target inflammation are therefore important to help reveal the role of inflammation in disease progression, and allows for developing new therapeutic strategies to ultimately improve patient care.

The purpose of this study was to develop a new in vivo inflammation imaging approach by targeting the cannabinoid receptor type 2 (CB2R), an emerging inflammation biomarker, using a unique near infrared (NIR) fluorescent probe…

The combined evidence indicates that NIR760-mbc94 is a promising inflammation imaging probe. Moreover, in vivo CB2R-targeted fluorescence imaging may have potential in the study of inflammation-related diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26069858