The Use of Styrene Maleic Acid Nanomicelles Encapsulating the Synthetic Cannabinoid Analog WIN55,212-2 for the Treatment of Cancer.

“Synthetic cannabinoid WIN55,212-2 (WIN) has shown a promise as an anticancer agent but causes psychoactive side-effects.

In the present study, nano-micelles of styrene maleic acid (SMA)-conjugated WIN were synthesized to reduce side-effects and increase drug efficacy…

SMA-WIN demonstrated characteristics theorized to improve in vivo drug biodistribution.

Potent cytotoxicity was found against breast and prostate cancer cells in vitro, showing promise as a novel treatment against breast and prostate cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/26254360

Cannabinoids Regulate Intestinal Motor Function and Electrophysiological Activity of Myocytes in Rodents.

“This study aims to investigate the effects of cannabinoid (CB)-1 and CB2 receptor ligands on intestinal motor function and muscular electrophysiological activity in rodent gastrointestinal (GI) tract…

This is one of the first reports on neuronal regulation of intestinal motility through CB-dependent pathways with potential application in the treatment of inflammatory and functional GI disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26254701

The role of the peripheral cannabinoid system in the pathogenesis of detrusor overactivity evoked by increased intravesical osmolarity in rats.

“The cannabinoid receptors CB1 and CB2 are localized in the urinary bladder and play a role in the regulation of its function. We investigated the pathomechanisms through which hyperosmolarity induces detrusor overactivity (DO)…

These results demonstrate that hyperosmolar-induced DO is mediated by CB1 and CB2 receptors. Therefore, the cannabinoid pathway could potentially be a target for the treatment of urinary bladder dysfunction.”

http://www.ncbi.nlm.nih.gov/pubmed/26243021

Cannabinoids: is there a potential treatment role in epilepsy?

“Cannabinoids have been used medicinally for centuries, and in the last decade, attention has focused on their broad therapeutic potential particularly in seizure management.

While some cannabinoids have demonstrated anticonvulsant activity in experimental studies, their efficacy for managing clinical seizures has not been fully established.

This commentary will touch on our understanding of the brain endocannabinoid system’s regulation of synaptic transmission in both physiological and pathophysiological conditions, and review the findings from both experimental and clinical studies on the effectiveness of cannabinoids to suppress epileptic seizures.

At present, there is preliminary evidence that non-psychoactive cannabinoids may be useful as anticonvulsants, but additional clinical trials are needed to fully evaluate the efficacy and safety of these compounds for the treatment of epilepsy.”

http://www.ncbi.nlm.nih.gov/pubmed/26234319

Novel Triazolopyrimidine-Derived Cannabinoid Receptor 2 Agonists As Potential Treatment for Inflammatory Kidney Diseases.

“The cannabinoid receptor 2 (CB2) system is described to modulate various pathological conditions, including inflammation and fibrosis.

A series of new heterocyclic small-molecule CB2 receptor agonists were identified from a high-throughput screen…

A significant depletion of the three measured kidney markers indicated a protective role of CB2 receptor activation toward inflammatory kidney damage. Compound 39 was also protective in a model of renal fibrosis.

Oral treatment with 39 at 3 mg kg-1 per day significantly decreased the amount of fibrosis by ∼40 % which was induced by unilateral ureter obstruction.”

http://www.ncbi.nlm.nih.gov/pubmed/26228928

The GPR55 antagonist CID16020046 protects against intestinal inflammation.

“G protein-coupled receptor 55 (GPR55) is a lysophospholipid receptor responsive to certain cannabinoids.

The role of GPR55 in inflammatory processes of the gut is largely unknown. Using the recently characterized GPR55 inhibitor CID16020046, we determined the role of GPR55 in experimental intestinal inflammation and explored possible mechanisms of action…

Pharmacological blockade of GPR55 reduces experimental intestinal inflammation by reducing leukocyte migration and activation, in particular that of macrophages. Therefore, CID16020046 represents a possible drug for the treatment of bowel inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/26227635

Endocannabinoid Signaling in Autism.

“Autism spectrum disorder (ASD) is a complex behavioral condition with onset during early childhood and a lifelong course in the vast majority of cases. To date, no behavioral, genetic, brain imaging, or electrophysiological test can specifically validate a clinical diagnosis of ASD. However, these medical procedures are often implemented in order to screen for syndromic forms of the disorder (i.e., autism comorbid with known medical conditions).

In the last 25 years a good deal of information has been accumulated on the main components of the “endocannabinoid (eCB) system”, a rather complex ensemble of lipid signals (“endocannabinoids”), their target receptors, purported transporters, and metabolic enzymes.

It has been clearly documented that eCB signaling plays a key role in many human health and disease conditions of the central nervous system, thus opening the avenue to the therapeutic exploitation of eCB-oriented drugs for the treatment of psychiatric, neurodegenerative, and neuroinflammatory disorders.

Here we present a modern view of the eCB system, and alterations of its main components in human patients and animal models relevant to ASD. This review will thus provide a critical perspective necessary to explore the potential exploitation of distinct elements of eCB system as targets of innovative therapeutics against ASD.”

http://www.ncbi.nlm.nih.gov/pubmed/26216231#

http://www.thctotalhealthcare.com/category/autism/

Mitochondrial CB1 receptor is involved in ACEA-induced protective effects on neurons and mitochondrial functions.

“Mitochondrial dysfunction contributes to cell death after cerebral ischemia/reperfusion (I/R) injury.

Cannabinoid CB1 receptor is expressed in neuronal mitochondrial membranes (mtCB1R) and involved in regulating mitochondrial functions under physiological conditions…

In purified neuronal mitochondria, mtCB1R activation attenuated Ca(2+)-induced mitochondrial injury.

In conclusion, mtCB1R is involved in ACEA-induced protective effects on neurons and mitochondrial functions, suggesting mtCB1R may be a potential novel target for the treatment of brain ischemic injury.”

http://www.ncbi.nlm.nih.gov/pubmed/26215450

An Overview of Products and Bias in Research.

“Cannabis is a genus of annual flowering plant.

Cannabis is often divided into 3 species-Cannabis sativa, Cannabis indica, and Cannabis ruderalis-but there is significant disagreement about this, and some consider them subspecies of the same parent species.

Cannabis sativa can grow to 5-18 feet or more, and often has a few branches.

Cannabis indica typically grows 2-4 feet tall and is compactly branched.

Cannabis ruderalis contains very low levels of Δ-9-tetrahyocannabinol so is rarely grown by itself. Cannabis ruderalis flowers as a result of age, not light conditions, which is called autoflowering. It is principally used in hybrids, to enable the hybrid to have the autoflowering property.

There are > 700 strains of cannabis, often with colorful names.

Some are strains of 1 of the 3 subspecies. Many are crossbred hybrids.

The strains can be named in a variety of ways: smell or lineage are common ways of naming. There are only a few rules about how the strains are named, and most strains’ names do not follow the rules.

There are 4 basic preparations of marijuana: bhang, hasish, oil (or hash oil), and leaves and/or buds.

In medical marijuana trials, subjective outcomes are frequently used but blind breaking can introduce significant bias. Blind breaking occurs when patients figure out if they are in the control or the treatment group. When this occurs, there is significant overestimation of treatment effect.”

http://www.ncbi.nlm.nih.gov/pubmed/26202343

Cannabinoids blocks tactile allodynia in diabetic mice without attenuation of its antinociceptive effect.

“Diabetic neuropathic pain is one of the most commonly encountered neuropathic pain syndromes.

It is well known that diabetic animals are less sensitive to the analgesic effect of morphine, and opioids are found to be ineffective in the treatment of diabetic neuropathic pain.

Cannabinoids are promising drugs and they share a similar pharmacological properties with opioids.

It has been reported that cannabinoid analgesia remained intact and to be effective in some models of nerve injury.

Thus, we investigated antinociceptive efficacy and the effects of cannabinoids on behavioral sign of diabetic neuropathic pain in diabetic mice by using WIN 55, 212-2, a cannabinoid receptor agonist.

This study suggests that cannabinoids have a potential beneficial effect on experimental diabetic neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/15342139