Constituents of Cannabis Sativa

“The Cannabis sativa plant has been used medicinally and recreationally for thousands of years, but recently only relatively some of its constituents have been identified.

There are more than 550 chemical compounds in cannabis, with more than 100 phytocannabinoids being identified, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

These phytocannabinoids work by binding to the cannabinoid receptors, as well as other receptor systems. Also within cannabis are the aromatic terpenes, more than 100 of which have been identified.

Cannabis and its constituents have been indicated as therapeutic compounds in numerous medical conditions, such as pain, anxiety, epilepsy, nausea and vomiting, and post-traumatic stress disorder.

This chapter provides an overview of some of the biological effects of a number of the cannabinoids and terpenes, as well as discussing their known mechanisms of action and evidence of potential therapeutic effects.”

https://pubmed.ncbi.nlm.nih.gov/33332000/

https://link.springer.com/chapter/10.1007%2F978-3-030-57369-0_1

In quest of a new therapeutic approach in COVID-19: the endocannabinoid system

Publication Cover“The SARS-Cov-2 virus caused a high morbidity and mortality rate disease, that is the COVID-19 pandemic. Despite the unprecedented research interest in this field, the lack of specific treatments leads to severe complications in a high number of cases.

Current treatment includes antivirals, corticosteroids, immunoglobulins, antimalarials, interleukin-6 inhibitors, anti-GM-CSF, convalescent plasma, immunotherapy, antibiotics, circulation support, oxygen therapy, and circulation support. Due to the limited results, until specific treatments are available, other therapeutic approaches need to be considered.

The endocannabinoid system is found in multiple systems within the human body, including the immune system. Its activation can lead to beneficial results such as decreased viral entry, decreased viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α, or IFN-γ. Moreover, endocannabinoid system activation can lead to an increase in anti-inflammatory cytokines, mainly represented by IL-10.

Overall, the cannabinoid system can potentially reduce pulmonary inflammation, increase the immunomodulatory effect, decrease PMN infiltration, reduce fibrosis, and decrease viral replication, as well as decrease the ‘cytokine storm’. Although the cannabinoid system has many mechanisms to provide certain benefits in the treatment of SARS-CoV-2 infected patients, research in this field is needed for a better understanding of the cannabinoid impact in this situation.”

https://pubmed.ncbi.nlm.nih.gov/33683968/

“Concerning the SARS-CoV-2 infection, the cannabinoid effects on the immune system have the potential to limit the abnormal function of the immune system and therefore decrease the overall mortality.”

https://www.tandfonline.com/doi/full/10.1080/03602532.2021.1895204

Antiseizure effects of the cannabinoids in the amygdala-kindling model

“Objective: Focal impaired awareness seizures (FIASs) are the most common seizure type in adults and are often refractory to medication. Management of FIASs is clinically challenging, and new interventions are needed for better seizure control. The amygdala-kindling model is a preclinical model of FIASs with secondary generalization.

The present study assessed the efficacy of cannabidiol (CBD), ∆9-tetrahydrocannabinol (THC), and a combination of CBD and THC in a 15:1 ratio at suppressing focal and secondarily generalized seizures in the amygdala-kindled rat.

Results: CBD alone produced a partial suppression of both generalized seizures (median effective dose [ED50 ] = 283 mg/kg) and focal seizures (ED40 = 320 mg/kg) at doses that did not produce ataxia. THC alone also produced partial suppression of generalized (ED50 = 10 mg/kg) and focal (ED50 = 30 mg/kg) seizures, but doses of 10 mg/kg and above produced hypolocomotion, although not ataxia. The addition of a low dose of THC to CBD (15:1) left-shifted the CBD dose-response curve, producing much lower ED50 s for both generalized (ED50 = 26 + 1.73 mg/kg) and focal (ED50 = 40 + 2.66 mg/kg) seizures. No ataxia or hypolocomotion was seen at these doses of the CBD + THC combination.

Significance: CBD and THC both have antiseizure properties in the amygdala-kindling model, although THC produces suppression of the amygdala focus only at doses that produce hypolocomotion. The addition of small amounts of THC greatly improves the effectiveness of CBD. A combination of CBD and THC might be useful for the management of FIASs.”

https://pubmed.ncbi.nlm.nih.gov/34251027/

https://onlinelibrary.wiley.com/doi/10.1111/epi.16973

Δ9-Tetrahydrocannabivarin (THCV): a commentary on potential therapeutic benefit for the management of obesity and diabetes

figure1“Δ9-Tetrahydrocannabivarin (THCV) is a cannabis-derived compound with unique properties that set it apart from the more common cannabinoids, such as Δ9-tetrahydrocannabinol (THC). The main advantage of THCV over THC is the lack of psychoactive effects. In rodent studies, THCV decreases appetite, increases satiety, and up-regulates energy metabolism, making it a clinically useful remedy for weight loss and management of obesity and type 2 diabetic patients. The distinctions between THCV and THC in terms of glycemic control, glucose metabolism, and energy regulation have been demonstrated in previous studies. Also, the effect of THCV on dyslipidemia and glycemic control in type 2 diabetics showed reduced fasting plasma glucose concentration when compared to a placebo group. In contrast, THC is indicated in individuals with cachexia. However, the uniquely diverse properties of THCV provide neuroprotection, appetite suppression, glycemic control, and reduced side effects, etc.; therefore, making it a potential priority candidate for the development of clinically useful therapies in the future. Hopefully, THCV could provide an optional platform for the treatment of life-threatening diseases.”

https://pubmed.ncbi.nlm.nih.gov/33526143/

“The psychoactive effects of THC in marijuana are the main reasons for its classification as a Schedule I substance, even though it is the THC that the U.S. Food and Drug Administration (FDA) approved for appetite stimulation and weight gain. In contrast to THC, clinical and therapeutic advantages of THCV regarding its lack of psychoactive effects in human studies are of great value in pharmacotherapy. It is envisioned that the unique and diverse characteristics of THCV could be explored for further development into clinically useful medicines for the treatment of life-threatening diseases.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-0016-7

Cannabis sativa as a Treatment for Obesity: From Anti-Inflammatory Indirect Support to a Promising Metabolic Re-Establishment Target

View details for Cannabis and Cannabinoid Research cover image“Introduction: Obesity is defined as an excess of accumulation of fat that can be harmful to health. Storage of excess fat in the adipose tissue triggers an inflammatory process, which makes obesity a low-grade chronic inflammatory disease. Obesity is considered a complex and multifactorial disease; hence, no intervention strategy appears to be an ideal treatment for all individuals. Therefore, new therapeutic alternatives are often studied for the treatment of this disease. Currently, herbal medicines are gaining ground in the treatment of obesity and its comorbidities. In this context, much attention is being paid to Cannabis sativa derivatives, and their therapeutic functions are being widely studied, including in treating obesity. 

Objective: Highlight the pharmacological properties of Δ9-tetrahydrocannabivarin (THCV), Δ9-tetrahydrocannabidinol (THC), and cannabidiol (CBD), the predominant isolated components of Cannabis sativa, as well as its therapeutic potential in the treatment of obesity. 

Results: Evidence shows that Cannabis sativa derivatives have therapeutic potential due to their anti-inflammatory properties. In addition, people who use cannabis have a lower body mass index than those who do not, making the plant an option to reduce and reverse inflammation and comorbidities in obesity. 

Conclusion: It is concluded that phytocannabinoids derived from Cannabis sativa have therapeutic potential due to its anti-inflammatory, antioxidant, and neuroprotective properties, making the plant a study option to reduce and reverse inflammation and comorbidities associated with obesity.”

https://pubmed.ncbi.nlm.nih.gov/34242511/

https://www.liebertpub.com/doi/10.1089/can.2021.0016

Δ 9 -Tetrahydrocannabinol promotes functional remyelination in the mouse brain

British Journal of Pharmacology“Background and purpose: Research on demyelinating disorders aims to find novel molecules that are able to induce oligodendrocyte precursor cell differentiation to promote central nervous system remyelination and functional recovery.

Δ9 -Tetrahydrocannabinol (THC), the most prominent active constituent of the hemp plant Cannabis sativa, confers neuroprotection in animal models of demyelination. However, the possible effect of THC on myelin repair has never been studied.

Experimental approach: By using oligodendroglia-specific reporter mouse lines in combination with two models of toxin-induced demyelination, we analysed the effect of THC on the processes of oligodendrocyte regeneration and functional remyelination.

Key results: We show that THC administration enhanced oligodendrocyte regeneration, white matter remyelination and motor function recovery. THC also promoted axonal remyelination in organotypic cerebellar cultures. THC remyelinating action relied on the induction of oligodendrocyte precursor differentiation upon cell cycle exit and via CB1 cannabinoid receptor activation.

Conclusions and implications: Overall, our study identifies THC administration as a promising pharmacological strategy aimed to promote functional CNS remyelination in demyelinating disorders.”

https://pubmed.ncbi.nlm.nih.gov/34216154/

“Our study provides a novel therapeutic advantage of THC-based interventions in multiple sclerosis by promoting remyelination and functional recovery. New clinical trials with improved designs on cannabinoids in people with multiple sclerosis are needed now, considering these compounds as potential remyelinating/disease-modifying drugs to try to overcome previous failures. Our work also suggests that at least part of the neuroprotective action of phytocannabinoids in multiple sclerosis animal models and potentially in patients as well may be due to an enhanced CNS remyelination. Finally, this study also identifies THC as a potent inductor of oligodendrocyte progenitor cell differentiation under demyelination in mice, opening the possibility for this molecule to become a candidate drug to promote oligodendrocyte regeneration and remyelination in the treatment of demyelinating disorders.”

https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.15608

α-Pinene: A never-ending story

Phytochemistry“α-Pinene represents a member of the monoterpene class and is highly distributed in higher plants like conifers, Juniper ssp. and Cannabis ssp.

α-Pinene has been used to treat respiratory tract infections for centuries. Furthermore, it plays a crucial role in the fragrance and flavor industry. In vitro assays have shown an enantioselective profile of (+)- and (-)-α-pinene for antibacterial and insecticidal activity, respectively.”

https://pubmed.ncbi.nlm.nih.gov/34365295/

https://www.sciencedirect.com/science/article/pii/S0031942221002065?via%3Dihub

Image 1

“α-Pinene Enhances the Anticancer Activity of Natural Killer Cells via ERK/AKT Pathway. Our findings demonstrate that α-pinene activates NK cells and increases NK cell cytotoxicity, suggesting it is a potential compound for cancer immunotherapy.” https://pubmed.ncbi.nlm.nih.gov/33440866/

“α-Pinene inhibits tumor invasion through downregulation of nuclear factor (NF)-κB-regulated matrix metalloproteinase-9 gene expression in MDA-MB-231 human breast cancer cells. These results suggest that α-pinene has a significant effect on the inhibition of tumor invasion and may potentially be developed into an anti-metastatic drug.”   https://applbiolchem.springeropen.com/articles/10.1007/s13765-016-0175-6

Medical cannabinoids for treatment of neuropsychiatric symptoms in dementia: systematic review

SciELO - Trends in Psychiatry and Psychotherapy“Introduction: Neuropsychiatric symptoms are an integral component of the natural history of dementia, occurring from prodromal to advanced stages of the disease process and leading to increased burden and morbidity. Clinical presentations are pleomorphic, and clinical management often requires combination of pharmacological and non-pharmacological interventions. However, limited efficacy and a non-negligible incidence of adverse events of psychotropic drugs reinforce the need for novel therapeutic options.

Aims: To review the evidence supporting the use of medical cannabinoids for the treatment of neuropsychiatric symptoms of dementia (NPS).

Results: Fifteen publications with original clinical data were retrieved, being 5 controlled clinical trials, 3 open-label/observational studies, and 7 case reports. Most studies indicated that the use of medical cannabinoids engendered favorable outcomes for the treatment of neuropsychiatric symptoms related to moderate and advanced stages of dementia, particularly agitation, aggressive behavior and sleep and sexual disinhibition.

Conclusion: Medical cannabinoids represent a promising pharmacological approach for the treatment of NPS, with preliminary evidence of benefit at least in moderate to severe dementia. Controlled trials with longitudinal design and larger samples are required to examine the long-term efficacy of these drugs in different types and stages of dementia, in addition to their adverse events and risk of interactions with other drugs. Many pharmacological details are yet to be determined, such as dosing, treatment duration and concentrations of active compounds (e.g., CBD/THC ratio) in commercial preparations of medical cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/34374269/

Prosocial Effects of Nonpsychotropic Cannabis sativa in Mice

View details for Cannabis and Cannabinoid Research cover image“Introduction: Cannabis sativa L. (C. sativa) is used since ancient times to produce fabrics, baskets, and cords. Later, different ethnic groups used to burn the leaves and flowers of psychotropic cultivars with high Δ9-tetrahydrocannabinol (D9-THC) levels, during the religious or propitiatory rites to alter the state of consciousness. To date, it is not known whether also nonpsychotropic cultivars of C. sativa were used during these rites, and whether these varieties could have an effect on human behavior.

This study aimed to evaluate the behavioral effects of an extract of nonpsychotropic C. sativa (NP-CS) in mice.

Results: RP-HPLC-UV analysis demonstrated that D9-THC was present in lower concentration with respect to other cannabinoids, like cannabidiol. Furthermore, the GC-MS analysis revealed the presence of several terpenoids. Concerning in vivo studies, chronic treatment with NP-CS did not alter body weight, motility, and anxiety and increased social interaction.

Conclusions: This study highlighted the prosocial effects of NP-CS.”

https://pubmed.ncbi.nlm.nih.gov/34370607/

https://www.liebertpub.com/doi/10.1089/can.2021.0017

Therapeutic Potential of Neoechinulins and Their Derivatives: An Overview of the Molecular Mechanisms Behind Pharmacological Activities

Neuroenergetics, Nutrition and Brain Health | Authors“Neoechinulins are diketopiperazine type indole alkaloids that demonstrate radical scavenging, anti-inflammatory, antiviral, anti-neurodegenerative, neurotrophic factor-like, anticancer, pro-apoptotic, and anti-apoptotic properties.

An array of neoechinulins such as neoechinulins A-E, isoechinulins A-C, cryptoechunilin have been isolated from various fungal sources like Aspergillus sp., Xylaria euglossa, Eurotium cristatum, Microsporum sp., etc. Besides, neoechinulin derivatives or stereoisomers were also obtained from diverse non-fungal sources viz. Tinospora sagittata, Opuntia dillenii, Cyrtomium fortunei, Cannabis sativa, and so on.

The main purpose of this review is to provide update information on neoechinulins and their analogues about the molecular mechanisms of the pharmacological action and possible future research. The recent data from this review can be used to create a basis for the discovery of new neoechinulin-based drugs and their analogues in the near future.

The online databases PubMed, Science and Google scholar were researched for the selection and collection of data from the available literature on neoechinulins, their natural sources and their pharmacological properties.

The published books on this topic were also analysed. In vitro and in vivo assays have established the potential of neoechinulin A as a promising anticancer and anti-neuroinflammatory lead molecule. Neoechinulin B was also identified as a potential antiviral drug against hepatitis C virus.

Toxicological and clinical trials are needed in the future to improve the phyto-pharmacological profile of neoquinolines. From the analysis of the literature, we found that neoechinulins and their derivatives have special biological potential.”

https://pubmed.ncbi.nlm.nih.gov/34336908/

“In the future, neoquinolines may be introduced into functional foods or dietary compounds (nutraceuticals) that benefit human health by preventing or treating diseases, or by correcting metabolic disorders, or by preventing the progression or recurrence of a pathological situation.”

https://www.frontiersin.org/articles/10.3389/fnut.2021.664197/full