CBD Enhances the Anticancer Effects of THC

Image result for molecular cancer therapeutics
“Δ9-Tetrahydrocannabinol (Δ9-THC) and other cannabinoids can act as direct anticancer agents in multiple types of cancer in culture and in vivo.
Cannabidiol Enhances the Inhibitory Effects of  Δ9-Tetrahydrocannabinol on Human GlioblastomaCell Proliferation and Survival.
Δ9-THC and Cannabidiol Inhibit the Growth of Multiple Glioblastoma Cell Lines.
Cannabidiol Enhances the Inhibitory Effects of Δ9-THC on Glioblastoma Cell Growth.
Combination treatments with cannabinoids may improve overall efficacy”

“Cannabidiol Enhances the Inhibitory Effects of Δ9-Tetrahydrocannabinol on Human Glioblastoma Cell Proliferation and Survival”   http://mct.aacrjournals.org/content/9/1/180.full

Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death.

Logo of cddis

“Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells.

Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells.

Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death.

Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance.

Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD.

Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD.

The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/24309936

“The non-psychoactive plant cannabinoid, cannabidiol (CBD), alone has strong anti-inflammatory and immunosuppressive effects in diverse animal models of disease such as diabetes, cancer, rheumatoid arthritis and multiple sclerosis. In addition, CBD has been reported to have anxiolytic, antiemetic and antipsychotic effects. Moreover, CBD has been shown to possess antitumor activity in human breast carcinoma and to effectively reduce primary tumor mass, as well as size and number of lung metastasis in preclinical animal models of breast cancer.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877544/

“In summary, in this study we have identified VDAC1 as a new molecular target for CBD. Our study suggests that CBD-induced cell death may occur through the inhibition of VDAC1 conductance and that this interaction may be responsible for the anticancer and immunosuppressive properties of CBD.”

https://www.nature.com/articles/cddis2013471

“Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-CancerTherapeutics.” https://www.ncbi.nlm.nih.gov/pubmed/28824871

“Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.”  https://www.ncbi.nlm.nih.gov/pubmed/25448878

Cannabidiol Induces Cytotoxicity and Cell Death via Apoptotic Pathway in Cancer Cell Lines

“In view of obtaining potential anticancer compounds, we studied the inhibitory activity and the cytotoxic effects of a candidate compound in cancer cells. The cytotoxic effects of cannabidiol (CBD) in vitro were evaluated in NIH3T3 fibroblasts, B16 melanoma cells, A549 lung cancer cells, MDA-MB-231 breast cancer cells, Lenca kidney cells and SNU-C4 colon cancer cells.
The inhibitory activity of CBD was increased in all cancer cells and showed especially strong increment in breast cancer cells. The cytotoxicity of CBD increased in a dose- and time-dependent manner with growth inhibition in all cancer cell lines.
Therefore these results suggest that CBD has a possibility of anticancer agents and anticancer effects against cancer cells by modulation of apoptotic pathway in the range of 5-80 μM concentration.”

Phytochemical Aspects and Therapeutic Perspective of Cannabinoids in Cancer Treatment

Cannabis sativa L. – dried pistillate inflorescences and trichomes on their surface. (a) dried pistillate inflorescences (50% of the size); (b) non‐cystolithic trichome; (c) cystolithic trichome; (d) capitate‐sessile trichome; (e) simple bulbous trichome; (f) capitate‐stalked trichome (400×).

“Cannabis sativa L. (Cannabaceae) is one of the first plants cultivated by man and one of the oldest plant sources of fibre, food and remedies.

Cannabinoids comprise the plant‐derived compounds and their synthetic derivatives as well as endogenously produced lipophilic mediators. Phytocannabinoids are terpenophenolic secondary metabolites predominantly produced in CannabissativaL.

The principal active constituent is delta‐9‐tetrahydrocannabinol (THC), which binds to endocannabinoid receptors to exert its pharmacological activity, including psychoactive effect. The other important molecule of current interest is non‐psychotropic cannabidiol (CBD).

Since 1970s, phytocannabinoids have been known for their palliative effects on some cancer‐associated symptoms such as nausea and vomiting reduction, appetite stimulation and pain relief. More recently, these molecules have gained special attention for their role in cancer cell proliferation and death.

A large body of evidence suggests that cannabinoids affect multiple signalling pathways involved in the development of cancer, displaying an anti‐proliferative, proapoptotic, anti‐angiogenic and anti‐metastatic activity on a wide range of cell lines and animal models of cancer.”

https://www.intechopen.com/books/natural-products-and-cancer-drug-discovery/phytochemical-aspects-and-therapeutic-perspective-of-cannabinoids-in-cancer-treatment

Targeting the endocannabinoid system as a potential anticancer approach.

Publication Cover

“The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer.

Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network.

As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances.

Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.” https://www.ncbi.nlm.nih.gov/pubmed/29390896  http://www.tandfonline.com/doi/abs/10.1080/03602532.2018.1428344?journalCode=idmr20

“Anticancer mechanisms of cannabinoids”   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791144/
“Cannabinoids as Anticancer Drugs.”

Medical Cannabis: The Oncology Nurse’s Role in Patient Education About the Effects of Marijuana on Cancer Palliation

Home

“Cannabis, also known as marijuana, is legal either medicinally or recreationally in 29 states and the District of Columbia, with a majority of the U.S. adult population now living in states where cannabis is legal for medicinal use. As an advocate for patient autonomy and informed choice, the oncology nurse has an ethical responsibility to educate patients about and support their use of cannabis for palliation.

OBJECTIVES:

This article aims to discuss the human endocannabinoid system as a basis for better understanding the palliative and curative nature of cannabis as a medicine, as well as review cannabis delivery methods and the emerging role of the oncology nurse in this realm.

FINDINGS:

The oncology nurse can play a pivotal role in supporting patients’ use of cannabis for palliation”

https://www.ncbi.nlm.nih.gov/pubmed/29350699

https://cjon.ons.org/cjon/22/1/medical-cannabis-oncology-nurse-s-role-patient-education-about-effects-marijuana-cancer

(±)-Sativamides A and B, Two Pairs of Racemic Nor-lignanamide Enantiomers from the Fruits of Cannabis sativa (Hemp Seed).

The Journal of Organic Chemistry

“(±)-Sativamides A (1) and B (2), two pairs of nor-lignanamide enantiomers featuring a unique benzo-angular triquinane skeleton, were isolated from the fruits of Cannabis sativa (hemp seed). Their structures were elucidated by detailed spectroscopic analysis and ECD calculations. The resolution of (+)- and (-)-sativamides A and B were achieved by chiral HPLC. Pretreatment of neuroblastoma cells with 1 and 2 significantly reduced the endoplasmic reticulum (ER) stress-induced cytotoxicity.”

https://www.ncbi.nlm.nih.gov/pubmed/29345463

http://pubs.acs.org/doi/10.1021/acs.joc.7b02765

Rimonabant Kills Colon Cancer Stem Cells without Inducing Toxicity in Normal Colon Organoids

Image result for frontiers in pharmacology

“Colorectal cancer (CRC), like other tumor types, is a highly heterogeneous disease. Within the tumor bulk, intra-tumoral heterogeneity is also ascribable to Cancer Stem Cells (CSCs) subpopulation, characterized by high chemoresistance and the unique ability to retain tumorigenic potential, thus associated to tumor recurrence. High dynamic plasticity of CSCs, makes the development of winning therapeutic strategies even more complex to completely eradicate tumor fuel.

Rimonabant, originally synthesized as antagonist/inverse agonist of Cannabinoid Receptor 1, is able to inactivate Wnt signaling, both in vitro and in vivo, in CRC models, through inhibition of p300-histone acetyltransferase activity. Since Wnt/β-Catenin pathway is the main player underlying CSCs dynamic, this finding candidates Rimonabant as potential modulator of cancer stemness, in CRC.

Overall, results from this work provided new insights on anti-tumor efficacy of Rimonabant, strongly suggesting that it could be a novel lead compound for CRC treatment.

 Anti-tumor action of cannabinoids in CRC was strongly supported by several authors.
The Endocannabinoid (EC) system role in the progression of CRC has been analyzed in vivo in the mouse model of azoxymethane-induced colon carcinogenesis, where cannabinoids-mediated reduction of precancerous lesions in the mouse colon was found.
In CRC cells, agonists and antagonists of both cannabinoid receptors, CB1 and CB2, showed anti-tumor action through induction of cell death with different mechanisms ranging from apoptosis to mitotic catastrophe”

Provider Perspectives on Use of Medical Marijuana in Children With Cancer.

Home

“Although medical marijuana (MM) may have utility in the supportive care of children with serious illness, it remains controversial.

We investigated interdisciplinary provider perspectives on legal MM use in children with cancer.

Most pediatric oncology providers are willing to consider MM use in children with cancer and receive frequent inquiries.” https://www.ncbi.nlm.nih.gov/pubmed/29233937

http://pediatrics.aappublications.org/content/early/2017/12/08/peds.2017-0559.long

“Medical Marijuana For Children With Cancer Broadly Supported By Doctors. An overwhelming majority of health care professionals who care for children with cancer would be willing to help those children get medical marijuana” https://www.forbes.com/sites/tarahaelle/2017/12/12/medical-marijuana-for-children-with-cancer-broadly-supported-by-doctors/#3d31cf08795d

“Most doctors would allow medical marijuana for children with cancer, study finds. A considerable majority of medical physicians would help children treat cancer with medical cannabis, a new study suggests.” http://blog.sfgate.com/smellthetruth/2017/12/12/most-doctors-would-allow-medical-marijuana-for-children-with-cancer-study-finds/

“Clinicians Support Medical Marijuana Use in Children With Cancer, But Lack Knowledge” https://jamanetwork.com/journals/jama/fullarticle/2672986

Standardized Cannabis sativa extract attenuates tau and stathmin gene expression in the melanoma cell line.

Iranian Journal of Basic Medical Sciences

“Metastasis is the main cause of death in patients with melanoma.

Cannabis-based medicines are effective adjunctive drugs in cancer patients.

Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line.

RESULTS:

Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls.

CONCLUSION:

C. sativa decreased tau and stathmin gene expression and cancer metastasis. The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.”

https://www.ncbi.nlm.nih.gov/pubmed/29147495