It’s Colorectal Cancer Awareness Month. Please Be Aware:

“Prevention and Treatment of Colorectal Cancer by Natural Agents From Mother Nature. This review clearly demonstrates that various nutraceuticals provided by the Mother Nature have a huge potential for both prevention and treatment of Colorectal cancer (CRC). Since these agents can be administered chronically without any concern for safety and are highly affordable, their use has been the wave of the past and is likely to continue as the wave of the future.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693477/
“Links between inflammation and colon cancer metastasis” https://www.sciencedaily.com/releases/2015/08/150825094923.htm
“Inflammation and colon cancer. The connection between inflammation and tumorigenesis is well-established. Inflammation is also likely to be involved with other forms of sporadic as well as heritable colon cancer.https://www.ncbi.nlm.nih.gov/pubmed/20420949
“Cannabis-derived substances in cancer therapy–an emerging anti-inflammatory role for the cannabinoids. Chronic inflammation has been associated with neoplasia for sometime, and as a consequence, reducing inflammation as a way of impacting cancer presents a new role for these compounds. https://www.ncbi.nlm.nih.gov/pubmed/20925645
“Cannabinoids as gastrointestinal anti-inflammatory drugs.” https://www.ncbi.nlm.nih.gov/pubmed/28239924
“Colon Cancer Risk Linked To High-Fat Diet: How Eating More Fat Can Increase Intestinal Tumors” http://www.medicaldaily.com/colon-cancer-high-fat-diet-intestinal-tumors-376664
 
“Study: Red and Processed Meats Linked With Colon Cancer Risk” http://healthland.time.com/2011/05/27/study-red-and-processed-meats-linked-with-colon-cancer-risk/
 
“Eating hot dogs, ham and other processed meat can cause colorectal cancer, and eating red meat “probably” can cause cancer, the World Health Organization’s cancer agency reported” http://www.usatoday.com/story/news/nation/2015/10/26/experts-processed-meats-can-cause-cancer/74615390/
 
“Mediterranean Diet Reduces Risk of Colon Cancer”
 
 
“More evidence a veg diet might lower cancer risk” http://www.today.com/health/veggie-diet-lowers-colon-cancer-risk-t7671
 
 
 
“Omegas linked with colon cancer survival. A large, observational study has linked higher intake of omega-3s with a lower risk of dying from colon cancer.” http://www.newhope.com/breaking-news/omegas-linked-colon-cancer-survival
 “Study shows how high-fat diets increase colon cancer risk” http://news.temple.edu/news/2012-03-06/study-shows-how-high-fat-diets-increase-colon-cancer-risk
“Poor metabolic health linked to increased risk for colorectal cancer in normal-weight women” http://www.news-medical.net/news/20170201/Poor-metabolic-health-linked-to-increased-risk-for-colorectal-cancer-in-normal-weight-women.aspx
 
“Cheese, Milk, and Fatty Fish Can Help Fight Colon Cancer” https://munchies.vice.com/en_us/article/cheese-milk-and-fatty-fish-can-help-fight-colon-cancer
“Diet, exercise and aspirin: 3 tools to fight colon cancer” http://ktar.com/story/1314810/diet-exercise-aspirin-3-tools-fight-colon-cancer/
“Many Early Colon Cancers Linked to Inherited Genes” https://medlineplus.gov/news/fullstory_162574.html
“E.coli Bacteria Linked to Colon Cancer” http://www.ibtimes.co.uk/e-coli-bateria-linked-colon-cancer-375102
 
“Colorectal cancer prevalence linked to human papillomavirus: a systematic review with meta-analysis” http://www.scielo.br/scielo.php?pid=S1415-790X2016000400791&script=sci_arttext&tlng=en
“Colon cancer linked to viruses in beef, Nobel-winning scientist contends” http://www.scmp.com/lifestyle/health/article/1695757/colon-cancer-linked-viruses-beef-nobel-winning-scientist-contends
 
“Diet High in Choline Linked with Increased Risk of Colorectal Polyps. According to the results of a study published in the Journal of the National Cancer Institute, high intake of choline-a nutrient found in foods such as red meat, eggs, poultry, and dairy products-may be linked with an increased risk of colorectal polyps.” http://news.cancerconnect.com/diet-high-in-choline-linked-with-increased-risk-of-colorectal-polyps/
“High-Glycemic Foods Linked to Colon Cancer. These foods include breads, pastas, pancakes, and other carbohydrates made from refined “white” grains, as well as other processed or sugary foods such as cakes, cookies, and other snacks.” http://www.webmd.com/colorectal-cancer/news/20040203/high-glycemic-foods-linked-to-colon-cancer#1
 
“Low-carb diet cuts risk of colon cancer” https://www.utoronto.ca/news/low-carb-diet-cuts-risk-colon-cancer
 
“Common food additive promotes colon cancer in mice. Emulsifiers, which are added to most processed foods to aid texture and extend shelf life, can alter intestinal bacteria in a manner that promotes intestinal inflammation and colorectal cancer” https://www.sciencedaily.com/releases/2016/11/161107110639.htm
“Processed meats including bacon, hot dogs linked to colon cancer” http://www.cp24.com/news/processed-meats-including-bacon-hot-dogs-linked-to-colon-cancer-1.2627498
“Processed meat can cause colon cancer, World Health Organization says” http://www.cbc.ca/news/health/meat-cancer-world-health-organization-1.3288355
 
“Sweets, sugary snacks linked to colorectal cancer” http://www.cbsnews.com/news/sweets-sugary-snacks-linked-to-colorectal-cancer/
“Eating Nuts Linked to Lower Risk of Colon Cancer” http://www.livescience.com/54448-eating-nuts-may-lower-colon-cancer-risk.html
 
“Coffee consumption linked to lower risk of colorectal cancer” http://www.ctvnews.ca/health/coffee-consumption-linked-to-lower-risk-of-colorectal-cancer-1.2841834
“Alcohol Linked to Colorectal Cancer Risk” http://www.medscape.com/viewarticle/749886
“Excessive alcohol consumption favours high risk polyp or colorectal cancer occurrence among patients with adenomas: a case control study” http://gut.bmj.com/content/50/1/38.full
 
“High vitamin D levels linked to lower risk of colon cancer” http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_22-1-2010-13-46-0
 
“Anthocyanins in Purple, Blue and Red Foods Fight Colon Cancer” http://reliawire.com/anthocyanins-purple-blue-red-foods-fight-colon-cancer/
 
“Prunes reduce colon cancer risk by benefiting healthy gut bacteria” http://www.belmarrahealth.com/prunes-reduce-colon-cancer-risk-by-benefiting-healthy-gut-bacteria/
“BLACK RASPBERRIES A POTENTIALLY POWERFUL AGENT IN FIGHT AGAINST COLON CANCER” https://researchnews.osu.edu/archive/brberry.htm
 
 
 
 
 
“G‐protein coupled receptor 55 (GPR55), a lysophospholipid receptor, has been shown to play an important role in carcinogenesis. GPR55 is involved in the migratory behaviour of colon carcinoma cells and may serve as a pharmacological target for the prevention of metastasis.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4688947/
“The putative cannabinoid receptor GPR55 promotes cancer cell proliferation.” http://www.ncbi.nlm.nih.gov/pubmed/21057532
 “L-α-lysophosphatidylinositol meets GPR55: a deadly relationship. Evidence points to a role of L-α-lysophosphatidylinositol (LPI) in cancer.” http://www.ncbi.nlm.nih.gov/pubmed/21367464
“Modulation of l-α-Lysophosphatidylinositol/GPR55 Mitogen-activated Protein Kinase (MAPK) Signaling by Cannabinoids*Here, we report that the little investigated cannabis constituents CBDV, CBGA, and CBGV are potent inhibitors of LPI-induced GPR55 signaling. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. Our findings also suggest that GPR55 may be a new pharmacological target for the following C. sativa constituents: Δ9-THCV, CBDV, CBGA, and CBGV. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249141/
 “Cannabinoids and cancer: potential for colorectal cancer therapy.” https://www.ncbi.nlm.nih.gov/pubmed/16042581
 “The endogenous cannabinoid system protects against colonic inflammation”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC385396/
 “Cannabinoids in intestinal inflammation and cancer. In vivo, cannabinoids – via direct or indirect activation of CB(1) and/or CB(2) receptors – exert protective effects in well-established models of intestinal inflammation and colon cancer. Pharmacological elevation of endocannabinoid levels may be a promising strategy to counteract intestinal inflammation and colon cancer.” http://www.ncbi.nlm.nih.gov/pubmed/19442536
 “Cannabinoids have become a novel therapeutic approach against colon cancer with protective and anti-tumoral effects on colorectal carcinoma cell lines and in animal models of colon cancer” http://impactjournals.com/oncoscience/index.php?pii=119 
 “Possible endocannabinoid control of colorectal cancer growth. Inhibitors of endocannabinoid inactivation may prove useful anticancer agents.” https://www.ncbi.nlm.nih.gov/pubmed/12949714
“Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. Cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increasing evidence shows antitumor actions of cannabinoid agonists on several tumor cells in vitro and in animal models” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755791/

“Loss of cannabinoid receptor 1 accelerates intestinal tumor growth”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561258/

“Turned-off Cannabinoid Receptor Turns On Colorectal Tumor Growth” https://www.sciencedaily.com/releases/2008/08/080801074056.htm

“Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention. Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).” http://www.news-medical.net/news/2008/08/03/40485.aspx

“Cannabinoid Receptor Activation Induces Apoptosis through Tumor Necrosis Factor α–Mediated Ceramide De novo Synthesis in Colon Cancer Cells. The present study shows that either CB1 or CB2 receptor activation induces apoptosis through ceramide de novo synthesis in colon cancer cells. ” http://clincancerres.aacrjournals.org/content/14/23/7691.long

“The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Here, we report that CB1 and CB2 cannabinoid receptors are expressed in human colorectal adenoma and carcinoma cells, and show for the first time that THC induces apoptosis in colorectal cancer cells. The use of THC, or selective targeting of the CB1 receptor, may represent a novel strategy for colorectal cancer therapy.” http://www.ncbi.nlm.nih.gov/pubmed/17583570

“Programmed Cell Death (Apoptosis)” http://www.ncbi.nlm.nih.gov/books/NBK26873/

“Cannabis-Linked Cell Receptor Might Help Prevent Colon Cancer” http://www.medicinenet.com/script/main/art.asp?articlekey=91511

“Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. Cannabidiol, a safe and non-psychotropic ingredient of Cannabis sativa, exerts pharmacological actions (antioxidant and intestinal antinflammatory) and mechanisms (inhibition of endocannabinoid enzymatic degradation) potentially beneficial for colon carcinogenesis. It is concluded that cannabidiol exerts chemopreventive effect in vivo and reduces cell proliferation through multiple mechanisms.” https://www.ncbi.nlm.nih.gov/pubmed/22231745

“CBD-Rich Marijuana Fights Colon Cancer, New Study Finds” http://blog.sfgate.com/smellthetruth/2014/01/06/cbd-rich-marijuana-fights-colon-cancer-new-study-finds/

“Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Cannabis-based medicines are useful adjunctive treatments in cancer patients.” http://www.ncbi.nlm.nih.gov/pubmed/24373545

“Cannabigerol (CBG) is a safe non-psychotropic Cannabis-derived cannabinoid. CBG hampers colon cancer progression in vivo and selectively inhibits the growth of colorectal cancer cells. CBG should be considered translationally in colorectal cancer prevention and cure.” http://www.ncbi.nlm.nih.gov/pubmed/25269802

“According to researchers at the University of Texas in Houston chemicals in marijuana could be a potential cure in the treatment of colon cancer.” http://www.digitaljournal.com/article/258161

“Cannabis compound clue to colon cancer”  https://www.newscientist.com/article/mg19926685.000-cannabis-compound-clue-to-colon-cancer/

“Marijuana takes on colon cancer” https://www.newscientist.com/article/dn14451-marijuana-takes-on-colon-cancer/

“Cannabinoids appear to kill tumor cells but do not affect their nontransformed counterparts and may even protect them from cell death. Tumor specimens revealed that THC had antiangiogenic and antiproliferative effects. CBD has also been demonstrated to exert a chemopreventive effect in a mouse model of colon cancer. In in vitro experiments involving colorectal cancer cell lines, the investigators found that CBD protected DNA from oxidative damage, increased endocannabinoid levels, and reduced cell proliferation. In addition, both plant-derived and endogenous cannabinoids have been studied for anti-inflammatory effects. A mouse study demonstrated that endogenous cannabinoid system signaling is likely to provide intrinsic protection against colonic inflammation. As a result, a hypothesis that phytocannabinoids and endocannabinoids may be useful in the risk reduction and treatment of colorectal cancer has been developed.” http://www.cancer.gov/about-cancer/treatment/cam/hp/cannabis-pdq#section/_7

Dietary ω-3 Polyunsaturated Fatty Acids Inhibit Tumor Growth in Transgenic ApcMin/+ Mice, Correlating with CB1 Receptor Up-Regulation.

Image result for international journal of molecular sciences

“Mediterranean diet components, such as olive oil and ω-3 polyunsaturated fatty acids (ω-3 PUFAs), can arrest cell growth and promote cell apoptosis.

Recently, olive oil has been demonstrated to modulate type-1 cannabinoid (CB1) receptor gene expression in both human colon cancer cells and rat colon. The aim of this study was to investigate a possible link between olive oil and ω-3 PUFAs effects and CB1 receptor expression in both intestinal and adipose tissue of ApcMin/+ mice.

To confirm the role for the CB1 receptor as a negative modulator of cell proliferation in human colon cancer, CB1 receptor gene expression was also detected in tumor tissue and in surrounding normal mucosa of patients with colorectal cancer (CRC).

Dietary ω-3 PUFAs significantly inhibited intestinal polyp growth in mice, correlating with CB1 receptor gene and protein expression induction. CB1 receptor gene up-regulation was also detected in adipose tissue, suggesting a close communication between cancer cells and the surrounding environment. Tissue CB1 receptor induction was associated with a concurrent inactivation of the Wnt/β-catenin pathway.

Moreover, there was a significant reduction in CB1 receptor gene expression levels in cancer tissue compared to normal surrounding mucosa of patients with CRC, confirming that in cancer the “protective” action of the CB1 receptor is lost.”

https://www.ncbi.nlm.nih.gov/pubmed/28245562

Concise review of the management of iatrogenic emesis using cannabinoids: emphasis on nabilone for chemotherapy-induced nausea and vomiting.

Image result for Cancer Chemother Pharmacol.

“Chemotherapy-induced nausea and vomiting (CINV) is a prevalent, distressing, and burdensome side effect of cancer chemotherapy. It is estimated to affect the majority of patients receiving certain anti-cancer drug regimens and can be treatment-limiting, even for life-saving medications. Despite seemingly numerous options, such as antimuscarinic anticholinergics, antihistamines, 5-HT3 receptor antagonists, dopamine receptor antagonists, and neurokinin-1 receptor antagonists, preventative therapies are often inadequately effective, particularly for “delayed CINV”-leaving an important unmet clinical need.

Cannabinoid receptor agonists, by virtue of their unique mechanism of action and efficacy and safety data reported in clinical trials, appear to offer a useful additional option.

The mechanistic value of cannabinoids has been well known for many years, but these agents may have been underutilized in the past because of the notoriety and legal status of marijuana. While botanical marijuana contains nearly 500 components, including the psychoactive tetrahydrocannabinol (THC), nabilone is an established, single-entity synthetic cannabinoid receptor agonist that has become the focus of renewed interest. We review the basic pharmacology and clinical trial data of nabilone for use in prophylaxis and treatment of CINV.”

Implication of cannabinoids in neurological diseases.

Image result for Cellular and Molecular Neurobiology

“1. Preparations from Cannabis sativa (marijuana) have been used for many centuries both medicinally and recreationally. 2. Recent advances in the knowledge of its pharmacological and chemical properties in the organism, mainly due to Delta(9)-tetrahydrocannabinol, and the physiological roles played by the endocannabinoids have opened up new strategies in the treatment of neurological and psychiatric diseases. 3. Potential therapeutic uses of cannabinoid receptor agonists include the management of spasticity and tremor in multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, cancer, and vasodilation that accompanies advanced cirrhosis. CB(1) receptor antagonists have therapeutic potential in Parkinson’s disease. 4. Dr. Julius Axelrod also contributed in studies on the neuroprotective actions of cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/16699878

“Medical marijuana: emerging applications for the management of neurologic disorders.” https://www.ncbi.nlm.nih.gov/pubmed/15458761

Cannabidiol: an alternative therapeutic agent for oral mucositis?

Image result for Journal of Clinical Pharmacy and Therapeutics

“Chemo- and radiotherapy are therapeutic modalities often used in patients with malignant neoplasms. They kill tumour cells but act on healthy tissues as well, resulting in adverse effects. Oral mucositis is especially of concern, due to the morbidity that it causes.

We reviewed the literature on the etiopathogenesis of oral mucositis and the activity of cannabidiol, to consider the possibility of its use for the prevention and treatment of oral mucositis.

The control of oxidative stress may prevent and alleviate oral mucositis. Studies have demonstrated that cannabidiol is safe to use and possesses antioxidant, anti-inflammatory and analgesic properties.

The literature on the use of cannabidiol in dentistry is still scarce. Studies investigating the use of cannabidiol in oral mucositis and other oxidative stress-mediated side effects of chemotherapy and radiotherapy on the oral mucosa should be encouraged.”

https://www.ncbi.nlm.nih.gov/pubmed/28191662

“Review: cannabidiol may be beneficial for oral mucositis. The researchers found evidence that oxidative stress control could prevent and relieve oral mucositis. Cannabidiol was found to be safe to use and demonstrated antioxidant, anti-inflammatory, and analgesic properties,” https://medicalxpress.com/news/2017-02-cannabidiol-beneficial-oral-mucositis.html
“Cannabidiol could be beneficial for the treatment of oral mucositis, according to a review published online Feb. 12 in the Journal of Clinical Pharmacy and Therapeutics.” http://www.bioportfolio.com/news/article/3029295/Review-cannabidiol-may-be-beneficial-for-oral-mucositis.html

Can Marijuana Cure Cancer? Pharmaceutical Company Developing Cannabis Medicine To Treat Brain Cancer

“Can Marijuana Cure Cancer? Pharmaceutical Company Developing Cannabis Medicine To Treat Brain Cancer” http://www.ibtimes.com/can-marijuana-cure-cancer-pharmaceutical-company-developing-cannabis-medicine-treat-2489282

“GW Pharmaceuticals Achieves Positive Results in Phase 2 Proof of Concept Study in Glioma” http://ir.gwpharm.com/releasedetail.cfm?ReleaseID=1010672
 
“Cannabinoid Drug Prolongs the Life of Brain Tumor Patients in Phase II Trials” http://labiotech.eu/gw-pharmaceuticals-brain-tumor/
“Drug Company Claims to Have Marijuana Treatment That Could Increase Lifespan of Brain Cancer Patients” http://www.complex.com/life/2017/02/gw-pharmaceuticals-claims-to-have-treatment-that-could-increase-lifespan-of-brain-cancer-patients
 “GW Pharma’s cannabis-derived combo med helps brain cancer patients” http://www.fiercebiotech.com/biotech/gw-pharma-s-cannabis-derived-combo-med-helps-brain-cancer-patients
“GW pharmaceuticals to develop oncology portfolio after cannabis medication shows promising results” http://www.telegraph.co.uk/business/2017/02/07/gw-pharmaceuticals-develop-oncology-portfolio-cannabis-medication/
“GW Pharma is touting claims that a combination of tetrahydrocannabinol (THC) and cannabidiol (CBD) produced positive survival benefits in a small study of 21 patients with recurrent glioblastoma multiforme, a common form of brain cancer.” https://endpts.com/gw-touts-positive-survival-benefit-in-small-brain-cancer-study-ablynx-files-for-ultra-rare-disease-drug-ok/

“GW Pharmaceuticals Is Set to Benefit as Cannabis Takes on Cancer”  https://www.thestreet.com/story/13996559/1/gw-pharmaceuticals-is-set-to-benefit-as-cannabis-takes-on-cancer.html

“GW Pharmaceuticals Achieves Positive Results In Phase 2 Proof Of Concept Study In Glioma” https://www.clinicalleader.com/doc/gw-pharmaceuticals-phase-proof-of-concept-study-in-glioma-0001

Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids.

 Image result for Front Mol Neurosci

“Medical marijuana is increasingly prescribed as an analgesic for a growing number of indications, amongst which terminal cancer and multiple sclerosis.

In this study we aimed to investigate the immune-cell modulatory properties of medical cannabis.

Healthy volunteers were asked to ingest medical cannabis, and kinome profiling was used to generate comprehensive descriptions of the cannabis challenge on inflammatory signal transduction in the peripheral blood of these volunteers.

Results were related to both short term and long term effects in patients experimentally treated with a medical marijuana preparation for suffering from abdominal pain as a result of chronic pancreatitis or other causes.

The results reveal an immunosuppressive effect of cannabinoid preparations via deactivation of signaling through the pro-inflammatory p38 MAP kinase and mTOR pathways and a concomitant deactivation of the pro-mitogenic ERK pathway. However, long term cannabis exposure in two patients resulted in reversal of this effect.

While these data provide a powerful mechanistic rationale for the clinical use of medical marijuana in inflammatory and oncological disease, caution may be advised with sustained use of such preparations.”

https://www.ncbi.nlm.nih.gov/pubmed/28174520

http://journal.frontiersin.org/article/10.3389/fnmol.2017.00014/full

Use of medical cannabis to reduce pain and improve quality of life in cancer patients.

Image result for Journal of Clinical Oncology

“Early attention to pain and symptoms in those with cancer improves both quality of life and survival. Opioid medications are the mainstay treatment of cancer-related pain.

Cannabinoids are increasingly used as adjunctive treatments for cancer pain, but clinical evidence supporting their use as an “opioid sparing agent” or to improve quality of life is as yet unknown. Our study sought to determine if the addition of cannabinoids (medical cannabis) resulted in the reduction of the average opioid dose required for pain control, and improve self-reported quality of life indices.

CONCLUSIONS:

Patients with cancer pain benefited from the addition of cannabinoids. The average opioid dose decreased following access to medical cannabis. Self-reported ratings of several quality of life indicators showed statistically significant improvement. Our study shows a signal that cannabinoids may reduce cancer patients’ reliance on opioids to control pain. Further prospective controlled studies are needed to further elucidate the role of cannabinoids in the treatment of cancer pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28148191

Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

Image result for Toxicology in Vitro

“The role of endocannabinoid system in melanoma development and progression is actually not fully understood.

This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma.

Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma.”

https://www.ncbi.nlm.nih.gov/pubmed/28131817

“Antitumor effects of THC.” http://www.ncbi.nlm.nih.gov/pubmed/11097557
“Cannabinoids (CB) like ∆9-tetrahydrocannabinol (THC) can induce cancer cell apoptosis and inhibit angiogenesis. Our results confirm the value of exogenous cannabinoids for the treatment of melanoma” http://www.ncbi.nlm.nih.gov/pubmed/25921771

Cannabinoids – a new weapon against cancer?

Image result for Postepy Hig Med Dosw (Online).

“Cannabis has been cultivated by man since Neolithic times. It was used, among others for fiber and rope production, recreational purposes and as an excellent therapeutic agent.

The isolation and characterization of the structure of one of the main active ingredients of cannabis – Δ9 – tetrahydrocannabinol as well the discovery of its cannabinoid binding receptors CB1 and CB2, has been a milestone in the study of the possibilities of the uses of Cannabis sativa and related products in modern medicine.

Many scientific studies indicate the potential use of cannabinoids in the fight against cancer.

Experiments carried out on cell lines in vitro and on animal models in vivo have shown that phytocannabinoids, endocannabinoids, synthetic cannabinoids and their analogues can lead to inhibition of the growth of many tumor types, exerting cytostatic and cytotoxic neoplastic effect on cells thereby negatively influencing neo-angiogenesis and the ability of cells to metastasize.

The main molecular mechanism leading to inhibition of proliferation of cancer cells by cannabinoids is apoptosis. Studies have shown, however, that the process of apoptosis in cells, treated with recannabinoids, is a consequence of induction of endoplasmic reticulum stress and autophagy. On the other hand, in the cellular context and dosage dependence, cannabinoids may enhance the proliferation of tumor cells by suppressing the immune system or by activating mitogenic factors.

Leading from this there is a an obvious need to further explore cannabinoid associated molecular pathways making it possible to develop safe therapeutic drug agents for patients in the future.”