CB1 receptor activation in the rat paraventricular nucleus induces bi-directional cardiovascular effects via modification of glutamatergic and GABAergic neurotransmission.

Image result for Naunyn Schmiedebergs Arch Pharmacol.

“We have shown previously that the cannabinoid receptor agonist CP55940 microinjected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anaesthetized rats induces depressor and pressor cardiovascular effects in the absence and presence of the CB1 antagonist AM251, respectively. The aim of our study was to examine whether the hypotension and/or hypertension induced by CP55940 given into the PVN results from its influence on glutamatergic and GABAergic neurotransmission. CP55940 was microinjected into the PVN of urethane-anaesthetized rats twice (S1 and S2, 20 min apart). Antagonists of the following receptors, NMDA (MK801), β2-adrenergic (ICI118551), thromboxane A2-TP (SQ29548), angiotensin II-AT1 (losartan) or GABAA (bicuculline), or the NO synthase inhibitor L-NAME were administered intravenously 5 min before S2 alone or together with AM251. The CP55940-induced hypotension was reversed into a pressor response by AM251, bicuculline and L-NAME, but not by the other antagonists. The CP55940-induced pressor effect examined in the presence of AM251 was completely reversed by losartan, reduced by about 50-60 % by MK801, ICI118551 and SQ29548, prevented by bilateral adrenalectomy but not modified by bicuculline and L-NAME. Parallel, but smaller, changes in heart rate accompanied the changes in blood pressure. The bi-directional CB1 receptor-mediated cardiovascular effects of cannabinoids microinjected into the PVN of anaesthetized rats depend on stimulatory glutamatergic and inhibitory GABAergic inputs to the sympathetic tone; the glutamatergic input is related to AT1, TP and β2-adrenergic receptors and catecholamine release from the adrenal medulla whereas the GABAergic input is reinforced by NO.”

http://www.ncbi.nlm.nih.gov/pubmed/27659492

The endocannabinoid anandamide causes endothelium-dependent vasorelaxation in human mesenteric arteries.

Image result for Pharmacol Res.

“The endocannabinoid anandamide (AEA) causes vasorelaxation in animal studies.

Although circulating AEA levels are increased in many pathologies, little is known about its vascular effects in humans. The aim of this work was to characterise the effects of AEA in human arteries.

Post hoc analysis of the data set showed that overweight patients and those taking paracetamol had reduced vasorelaxant responses to AEA.

These data show that AEA causes moderate endothelium-dependent, NO-dependent vasorelaxation in human mesenteric arteries via activation of CB1 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27633407

Activation of Cannabinoid Receptor Type II by AM1241 Ameliorates Myocardial Fibrosis via Nrf2-Mediated Inhibition of TGF-β1/Smad3 Pathway in Myocardial Infarction Mice.

Image result for Cell Physiol Biochem

“Myocardial interstitial fibrosis is a major histologic landmark resulting in cardiac dysfunction after myocardial infarction (MI).

Activation of cannabinoid receptor type II (CB2 receptor) have been demonstrated to reduce fibrosis in hepatic cirrhotic rat.

In this study, we aimed to investigate the effects of a CB2 receptor selective agonist AM1241 on myocardial fibrosis post MI in mice.

CONCLUSION:

CB2 receptor agonist AM1241 alleviated myocardial interstitial fibrosis via Nrf2 -mediated down-regulation of TGF-β1/Smad3 pathway, which suggested that CB2 receptor activation might represent a promising target for retarding cardiac fibrosis after MI.”

http://www.ncbi.nlm.nih.gov/pubmed/27614871

Cannabidiol-2′,6′-dimethyl ether as an effective protector of 15-lipoxygenase-mediated low-density lipoprotein oxidation in vitro.

“15-Lipoxygenase (15-LOX) is one of the key enzymes responsible for the formation of oxidized low-density lipoprotein (ox-LDL), a major causal factor for atherosclerosis.

We have recently reported that cannabidiol-2′,6′-dimethyl ether (CBDD) is a selective and potent inhibitor of 15-LOX-catalyzed linoleic acid oxygenation.

The results obtained demonstrate that CBDD is a potent and selective inhibitor of ox-LDL formation generated by the 15-LOX pathway.

These studies establish CBDD as both an important experimental tool for characterizing 15-LOX-mediated ox-LDL formation, and as a potentially useful therapeutic agent for treatment of atherosclerosis.

In sum, these findings suggest that CBDD may be a useful adjuvant in the treatment of atherosclerosis as well as an experimental tool for analyzing the mechanistic details of PUFAs oxygenation by 15-LOX.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012644/

“Cannabidiol-2′,6′-dimethyl ether, a cannabidiol derivative, is a highly potent and selective 15-lipoxygenase inhibitor. Thus, 15-LOX is suggested to be involved in development of atherosclerosis, and CBDD may be a useful prototype for producing medicines for atherosclerosis.”  http://www.ncbi.nlm.nih.gov/pubmed/19406952

Blood pressure regulation by endocannabinoids and their receptors

Logo of nihpa

“Cannabinoids and their endogenous and synthetic analogs exert powerful hypotensive and cardiodepressor effects by complex mechanisms involving direct and indirect effects on myocardium and vasculature.

On the one hand, endocannabinoids and cannabinoid receptors have been implicated in the hypotensive state associated with hemorrhagic, endotoxic and cardiogenic shock, and advanced liver cirrhosis.

On the other hand, there is emerging evidence suggesting that the endocannabinergic system plays an important role in the cardiovascular regulation in hypertension.

This review is aimed to discuss the in vivo hypotensive and cardiodepressant effects of cannabinoids mediated by cannabinoid and TRPV1 receptors, and focuses on the novel therapeutical strategies offered by targeting the endocannabinoid system in the treatment of hypertension.

The endocannabinergic system plays an important cardiovascular regulatory role not only in pathophysiological conditions associated with excessive hypotension but also in hypertension.

Thus, the pharmacological manipulation of this system may offer novel therapeutic approaches in a variety of cardiovascular disorders.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225528/

Cannabis compound benefits blood vessels

This computer rendition shows how fatty deposits can narrow blood vessels.

“Low dose helps combat formation of arterial blockages.

A compound derived from the cannabis plant protects blood vessels from dangerous clogging, a study of mice has shown.

The compound, called delta-9-tetrahydrocannabinol (THC), combats the blood-vessel disease atherosclerosis in mice.

The discovery could lead to new drugs to ward off heart disease and stroke.”

http://www.nature.com/news/2005/050404/full/news050404-7.html

 

Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory and cell death signaling pathways in diabetic cardiomyopathy

Logo of nihpa

“CBD, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts antiinflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans.

In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrosative stress, cell death and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose.

 A previous study has demonstrated cardiac protection by CBD in myocardial ischemic reperfusion injury; therefore, we have investigated the potential protective effects of CBD in diabetic hearts and in primary human cardiomyocytes exposed to high glucose.
Our findings underscore the potential of CBD for the prevention/treatment of diabetic complications.
Collectively, these results coupled with the excellent safety and tolerability profile of cannabidiol in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrosative stress, inflammation, cell death and fibrosis.”

Effects of activation of endocannabinoid system on myocardial metabolism.

“Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases – hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.”

http://www.ncbi.nlm.nih.gov/pubmed/27333924

Stimulated CB1 Cannabinoid Receptor Inducing Ischemic Tolerance and Protecting Neuron from Cerebral Ischemia.

“Anandamide system is mainly made up of cannabinoid receptors, their endogenous ligands and some related enzymes. Activation of the system mediates various molecular events, thereafter leading to vasodilation, bradycardia and anti-inflammation.

The stimulated cannabinoid receptors may take part in protection of endothelial cells from injury and therefore can be potential targets in therapy for some diseases, especially cardio or cerebral vascular disturbances.

Cerebral ischemia is a deadly disease that modern people have to face and will probably face for a long period of time. Ischemic tolerance has the protective effect of brain as an endogenous event in cerebral ischemia, in which variety of inducers such as transient cerebral ischemia, hypoxia, hypothermia and drug agents are involved.

Most of cannabinoid 1 receptors (CB1Rs), a member in G protein-coupled receptor family, exist in central nervous systems.

Mechanism of neuroprotection mediated by the receptor is considered through facilitating neurotransmitter release and regulating other molecular events. In this review, advance of the neuroprotection against cerebral ischemia and the mechanism of the action are overviewed.”

http://www.ncbi.nlm.nih.gov/pubmed/27142423

“Cerebral ischemia or brain ischemia, is a condition that occurs when there isn’t enough blood flow to the brain to meet metabolic demand. This leads to limited oxygen supply or cerebral hypoxia and leads to the death of brain tissue, cerebral infarction, or ischemic stroke. It is a sub-type of stroke along with subarachnoid hemorrhage and intracerebral hemorrhage. There are two kinds of ischemia: focal ischemia: confined to a specific region of the brain; global ischemia: encompasses wide areas of brain tissue.”  http://www.columbianeurosurgery.org/conditions/cerebral-ischemia/

Modulation of cellular redox homeostasis by the endocannabinoid system

“The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions.

Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types…

To conclude, there is growing appreciation that the ECS may play an important role in the regulation of cellular redox homeostasis…

Indeed, the studies highlighted in this review show that ECS function can impact upon free radical production in a number of different ways.

Crucially, given the importance of redox status in the development of numerous pathologies, these findings identify ECS components as potential therapeutic targets for the treatment of oxidative stress-related neurological, cardiovascular and metabolic disorders.”

http://rsob.royalsocietypublishing.org/content/6/4/150276