Δ9-THC and related cannabinoids suppress substance P- induced neurokinin NK1-receptor-mediated vomiting via activation of cannabinoid CB1 receptor.

European Journal of Pharmacology

“Δ9-THC suppresses cisplatin-induced vomiting through activation of cannabinoid CB1 receptors.

Cisplatin-evoked emesis is predominantly due to release of serotonin and substance P (SP) in the gut and the brainstem which subsequently stimulate their corresponding 5-HT3-and neurokinin NK1-receptors to induce vomiting. Δ9-THC can inhibit vomiting caused either by the serotonin precursor 5-HTP, or the 5-HT3 receptor selective agonist, 2-methyserotonin.

In the current study, we explored whether Δ9-THC and related CB1/CB2 receptor agonists (WIN55,212-2 and CP55,940) inhibit vomiting evoked by SP (50 mg/kg, i.p.) or the NK1 receptor selective agonist GR73632 (5 mg/kg, i.p.). Behavioral methods were employed to determine the antiemetic efficacy of cannabinoids in least shrews.

Our results showed that administration of varying doses of Δ9-THC (i.p. or s.c.), WIN55,212-2 (i.p.), or CP55,940 (i.p.) caused significant suppression of SP-evoked vomiting in a dose-dependent manner. When tested against GR73632, Δ9-THC also dose-dependently reduced the evoked emesis.

The antiemetic effect of Δ9-THC against SP-induced vomiting was prevented by low non-emetic doses of the CB1 receptor inverse-agonist/antagonist SR141716A (<10 mg/kg). We also found that the NK1 receptor antagonist netupitant can significantly suppress vomiting caused by a large emetic dose of SR141716A (20 mg/kg).

In sum, Δ9-THC and related cannabinoids suppress vomiting evoked by the nonselective (SP) and selective (GR73632) neurokinin NK1 receptor agonists via stimulation of cannabinoid CB1 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/31738934

https://www.sciencedirect.com/science/article/pii/S0014299919307587?via%3Dihub

Frequency of cannabis and illicit opioid use among people who use drugs and report chronic pain: A longitudinal analysis.

Image result for plos medicine“Ecological research suggests that increased access to cannabis may facilitate reductions in opioid use and harms, and medical cannabis patients describe the substitution of opioids with cannabis for pain management.

We aimed to investigate the longitudinal association between frequency of cannabis use and illicit opioid use among people who use drugs (PWUD) experiencing chronic pain.

The most commonly reported therapeutic reasons for cannabis use were pain (36%), sleep (35%), stress (31%), and nausea (30%). After adjusting for demographic characteristics, substance use, and health-related factors, daily cannabis use was associated with significantly lower odds of daily illicit opioid use (adjusted odds ratio 0.50, 95% CI 0.34-0.74, p < 0.001).

 

We observed an independent negative association between frequent cannabis use and frequent illicit opioid use among PWUD with chronic pain. These findings provide longitudinal observational evidence that cannabis may serve as an adjunct to or substitute for illicit opioid use among PWUD with chronic pain.”

https://www.ncbi.nlm.nih.gov/pubmed/31743343

“In conclusion, we found evidence to suggest that frequent use of cannabis may serve as an adjunct to or substitute for illicit opioid use among PWUD with chronic pain in Vancouver. The findings of this study have implications for healthcare and harm reduction service providers. In chronic pain patients with complex socio-structural and substance use backgrounds, cannabis may be used as a means of treating health problems or reducing substance-related harm. In the context of the current opioid crisis and the recent rollout of a national regulatory framework for cannabis use in Canada, frequent use of cannabis among PWUD with pain may play an important role in preventing or substituting frequent illicit opioid use.”

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002967

Cannabis Use, a Self-Management Strategy Among Australian Women With Endometriosis: Results From a National Online Survey.

Journal of Obstetrics and Gynaecology Canada  Home“This study sought to determine the prevalence, tolerability, and self-reported effectiveness of cannabis in women with endometriosis.

A total of 484 responses were included for analysis, with 76% of the women reporting the use of general self-management strategies within the last 6 months. Of those using self-management, 13% reported using cannabis for symptom management. Self-reported effectiveness in pain reduction was high (7.6 of 10), with 56% also able to reduce pharmaceutical medications by at least half. Women reported the greatest improvements in sleep and in nausea and vomiting. Adverse effects were infrequent (10%) and minor.

Women report good efficacy of cannabis in reducing pain and other symptoms, with few adverse effects reported.”

https://www.ncbi.nlm.nih.gov/pubmed/31722852

https://www.jogc.com/article/S1701-2163(19)30808-4/fulltext

Short- and Long-Term Effects of Cannabis on Headache and Migraine.

“Use of cannabis to alleviate headache and migraine is relatively common, yet research on its effectiveness remains sparse.

We sought to determine whether inhalation of cannabis decreases headache and migraine ratings as well as whether gender, type of cannabis (concentrate vs. flower), THC, CBD, or dose contribute to changes in these ratings. Finally, we explored evidence for tolerance to these effects.

Archival data were obtained from StrainprintTM, a medical cannabis app that allows patients to track symptoms before and after using different strains and doses of cannabis. Latent change score models and multilevel models were used to analyze data from 12,293 sessions where cannabis was used to treat headache and 7,441 sessions where cannabis was used to treat migraine.

There were significant reductions in headache and migraine ratings after cannabis use.

Men reported larger reductions in headache than women and use of concentrates was associated with larger reductions in headache than flower. Further, there was evidence of tolerance to these effects.

Perspective: Inhaled cannabis reduces self-reported headache and migraine severity by approximately 50%. However, its effectiveness appears to diminish across time and patients appear to use larger doses across time, suggesting tolerance to these effects may develop with continued use.”

https://www.ncbi.nlm.nih.gov/pubmed/31715263

“Headache and migraine ratings were reduced by nearly 50% after using cannabis.”

https://www.jpain.org/article/S1526-5900(19)30848-X/fulltext

Tetrahydrocannabinolic acid A (THCA-A) reduces adiposity and prevents metabolic disease caused by diet-induced obesity.

Biochemical Pharmacology“Medicinal cannabis has remarkable therapeutic potential, but its clinical use is limited by the psychotropic activity of Δ9-tetrahydrocannabinol (Δ9-THC). However, the biological profile of the carboxylated, non-narcotic native precursor of Δ9-THC, the Δ9-THC acid A (Δ9-THCA-A), remains largely unexplored.

Here we present evidence that Δ9-THCA-A is a partial and selective PPARγ modulator, endowed with lower adipogenic activity than the full PPARγ agonist rosiglitazone (RGZ) and enhanced osteoblastogenic effects in hMSC. Docking and in vitro functional assays indicated that Δ9-THCA-A binds to and activates PPARγ by acting at both the canonical and the alternative sites of the ligand-binding domain. Transcriptomic signatures in iWAT from mice treated with Δ9-THCA-A confirmed its mode of action through PPARγ.

Administration of Δ9-THCA-A in a mouse model of HFD-induced obesity significantly reduced fat mass and body weight gain, markedly ameliorating glucose intolerance and insulin resistance, and largely preventing liver steatosis, adipogenesis and macrophage infiltration in fat tissues. Additionally, immunohistochemistry, transcriptomic, and plasma biomarker analyses showed that treatment with Δ9-THCA-A caused browning of iWAT and displayed potent anti-inflammatory actions in HFD mice.

Our data validate the potential of Δ9-THCA-A as a low adipogenic PPARγ agonist, capable of substantially improving the symptoms of obesity-associated metabolic syndrome and inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31706843

“Δ9-THCA-A is a partial PPARγ ligand agonist with low adipogenic activity. Δ9-THCA-A enhances osteoblastogenesis in bone marrow derived mesenchymal stem cells. Δ9-THCA-A reduces body weight gain, fat mass, and liver steatosis in HFD-fed mice. Δ9-THCA-A improves glucose tolerance, insulin sensitivity, and insulin profiles in vivo. Δ9-THCA-A induces browning of iWAT and has a potent anti-inflammatory activity.”

https://www.sciencedirect.com/science/article/abs/pii/S0006295219303922?via%3Dihub

Inhibition of tremulous jaw movements in rats by memantine-Δ9 -tetrahydrocannabinol combination: neuroanatomical correlates.

British Journal of Pharmacology banner“Memantine and marijuana smoking have been previously found to inhibit tremor in parkinsonian patients, however, the observed effects were relatively weak. The tremorolytic efficacy of memantine and cannabinoid co-administration is unstudied.

This work aimed to evaluate antitremor activity of memantine-Δ9 -tetrahydrocannabinol combination; additionally, the involvement of some neuroanatomical structures in the regulation of the combination effect was evaluated.

EXPERIMENTAL APPROACH:

Haloperidol-induced tremulous jaw movements in rats were used as a model of parkinsonian-like tremor. To evaluate the role of central receptor systems in the drug effect, receptor-targeting agents were administered locally into certain brain areas.

KEY RESULTS:

Memantine and Δ9 -tetrahydrocannabinol alone were without effect, however, co-administration of the drugs significantly decreased number of haloperidol-induced jaw movements. The antitremor activity of the combination was antagonized (i) by injections of L-glutamate into the dorsal striatum, entopeduncular nucleus, substantia nigra pars reticulata, globus pallidus, supratrigeminal and trigeminal motor nuclei but not into the subthalamic and cuneiform nuclei; (ii) by injections of CGS 21680 into the ventrolateral striatum; (iii) by injections of bicuculline into the rostral part of the parvicellular reticular nucleus.

CONCLUSION AND IMPLICATIONS:

Memantine and Δ9 -tetrahydrocannabinol supra-additively inhibit haloperidol-induced tremulous jaw movements. Apparently, the co-administration of the drugs might be a new approach to the treatment of tremor. The presented results identify brain areas influencing parkinsonian-like tremor in rats; these data can help advance the development of novel treatments for repetitive involuntary movements.”

https://www.ncbi.nlm.nih.gov/pubmed/31696510

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14914

Memantine is a prescription drug used to treat moderate to severe confusion (dementia) related to Alzheimer’s disease. Memantine is available under the following different brand names: Namenda XR, and Namenda.”  https://www.rxlist.com/consumer_memantine_namenda/drugs-condition.htm

Perceived Efficacy of Medical Cannabis in the Treatment of Co-Occurring Health-Related Quality of Life Symptoms.

 Publication Cover“For persons living with chronic conditions, health-related quality of life (HRQoL) symptoms, such as pain, anxiety, depression, and insomnia, often interact and mutually reinforce one another.

There is evidence that medical cannabis (MC) may be efficacious in ameliorating such symptoms and improving HRQoL.

As many of these HRQoL symptoms may mutually reinforce one another, we conducted an exploratory study to investigate how MC users perceive the efficacy of MC in addressing co-occurring HRQoL symptoms. We conducted a cross-sectional online survey of persons with a state medical marijuana card in Illinois (N = 367) recruited from licensed MC dispensaries across the state. We conducted tests of ANOVA to measure how perceived MC efficacy for each HRQoL symptom varied by total number of treated symptoms reported by participants.

Pain was the most frequently reported HRQoL treated by MC, followed by anxiety, insomnia, and depression. A large majority of our sample (75%) reported treating two or more HRQoL symptoms. In general, perceived efficacy of MC in relieving each HRQoL symptom category increased with the number of co-occurring symptoms also treated with MC. Perceived efficacy of MC in relieving pain, anxiety, and depression varied significantly by number of total symptoms experienced.

This exploratory study contributes to our understanding of how persons living with chronic conditions perceive the efficacy of MC in treating co-occurring HRQoL symptoms. Our results suggest that co-occurring pain, anxiety, and depression may be particularly amenable to treatment with MC.”

https://www.ncbi.nlm.nih.gov/pubmed/31693457

https://www.tandfonline.com/doi/abs/10.1080/08964289.2019.1683712?journalCode=vbmd20

Targeting the cannabinoid receptor CB2 in a mouse model of l-dopa induced dyskinesia.

Neurobiology of Disease“L-dopa induced dyskinesia (LID) is a debilitating side-effect of the primary treatment used in Parkinson’s disease (PD), l-dopa. Here we investigate the effect of HU-308, a cannabinoid CB2 receptor agonist, on LIDs.

Utilizing a mouse model of PD and LIDs, induced by 6-OHDA and subsequent l-dopa treatment, we show that HU-308 reduced LIDs as effectively as amantadine, the current frontline treatment. Furthermore, treatment with HU-308 plus amantadine resulted in a greater anti-dyskinetic effect than maximally achieved with HU-308 alone, potentially suggesting a synergistic effect of these two treatments. Lastly, we demonstrated that treatment with HU-308 and amantadine either alone, or in combination, decreased striatal neuroinflammation, a mechanism which has been suggested to contribute to LIDs.

Taken together, our results suggest pharmacological treatments with CB2 agonists merit further investigation as therapies for LIDs in PD patients. Furthermore, since CB2 receptors are thought to be primarily expressed on, and signal through, glia, our data provide weight to suggestion that neuroinflammation, or more specifically, altered glial function, plays a role in development of LIDs.”

https://www.ncbi.nlm.nih.gov/pubmed/31669673

“Collectively, our findings suggest CB2 agonists offer a putative target to treat LIDs, with efficacy comparable to the frontline treatment amantadine. Our study suggests that targeting glial function may be an important strategy for developing therapies for treating LIDs, a major unmet need for PD patients.”

https://www.sciencedirect.com/science/article/pii/S0969996119303213?via%3Dihub

Prevalence and predictors of cannabis use among men receiving androgen-deprivation therapy for advanced prostate cancer.

 “Prostate cancer patients receiving androgen-deprivation therapy (ADT) often experience a combination of disease symptoms and treatment side effects. The therapeutic use of cannabis to alleviate these side effects has not been studied, despite increasing patient interest. With the increasing availability of cannabis, it is important for clinicians to understand the prevalence, predictors, and perceived benefits of cannabis use among patients with prostate cancer.

RESULTS:

Questionnaire data revealed that 23.2% of surveyed men had recently used cannabis. In contrast, 5.8% of men had detectable levels of THC metabolite in their urine. Combined questionnaire and urine data revealed that cannabis users were significantly younger (p=0.003) and had lower testosterone levels (p=0.003) than non-users. The majority of men experiencing common ADT side effects reported some degree of relief following cannabis use.

CONCLUSIONS:

Cannabis use among men with advanced prostate cancer receiving ADT is more prevalent than in the general population and the majority of other oncological cohorts. Lower testosterone levels and reported therapeutic benefit among cannabis users warrants confirmation in appropriate clinical trials.”

https://www.ncbi.nlm.nih.gov/pubmed/31658007

https://cuaj.ca/index.php/journal/article/view/5911

Structure of an allosteric modulator bound to the CB1 cannabinoid receptor.

Image result for nature chemical biology“The CB1 receptor mediates the central nervous system response to cannabinoids, and is a drug target for pain, anxiety and seizures.

CB1 also responds to allosteric modulators, which influence cannabinoid binding and efficacy.

To understand the mechanism of these compounds, we solved the crystal structure of CB1 with the negative allosteric modulator (NAM) ORG27569 and the agonist CP55940.

The structure reveals that the NAM binds to an extrahelical site within the inner leaflet of the membrane, which overlaps with a conserved site of cholesterol interaction in many G protein-coupled receptors (GPCRs).

The ternary structure with ORG27569 and CP55940 captures an intermediate state of the receptor, in which aromatic residues at the base of the agonist-binding pocket adopt an inactive conformation despite the large contraction of the orthosteric pocket.

The structure illustrates a potential strategy for drug modulation of CB1 and other class A GPCRs.”

https://www.ncbi.nlm.nih.gov/pubmed/31659318

https://www.nature.com/articles/s41589-019-0387-2