Cannabidiol for the treatment of cannabis withdrawal syndrome: a case report.

Abstract

“What is known and Objective:  Cannabis withdrawal in heavy users is commonly followed by increased anxiety, insomnia, loss of appetite, migraine, irritability, restlessness and other physical and psychological signs. Tolerance to cannabis and cannabis withdrawal symptoms are believed to be the result of the desensitization of CB(1) receptors by THC. Case summary:  This report describes the case of a 19-year-old woman with cannabis withdrawal syndrome treated with cannabidiol (CBD) for 10 days. Daily symptom assessments demonstrated the absence of significant withdrawal, anxiety and dissociative symptoms during the treatment. What is new and Conclusion:  CBD can be effective for the treatment of cannabis withdrawal syndrome.”

http://www.ncbi.nlm.nih.gov/pubmed/23095052

Medicinal use of cannabis: history and current status.

Abstract

“OBJECTIVE:

To provide an overview of the history and pharmacology of cannabis in relation to current scientific knowledge concerning actual and potential therapeutic uses of cannabis preparations and pure cannabinoids.

METHODS:

The literature on therapeutic uses of cannabis and cannabinoids was assessed with respect to type of study design, quality and variability of data, independent replications by the same or other investigators, magnitude of effects, comparison with other available treatments and reported adverse effects. The results of this review were also compared with those of major international reviews of this topic in the past five years.

CONCLUSIONS:

Pure tetrahydrocannabinol and several analogues have shown significant therapeutic benefits in the relief of nausea and vomiting, and stimulation of appetite in patients with wasting syndrome. Recent evidence clearly demonstrates analgesic and anti-spasticity effects that will probably prove to be clinically useful. Reduction of intraocular pressure in glaucoma and bronchodilation in asthma are not sufficiently strong, long lasting or reliable to provide a valid basis for therapeutic use. The anticonvulsant effect of cannabidiol is sufficiently promising to warrant further properly designed clinical trials. There is still a major lack of long term pharmacokinetic data and information on drug interactions. For all the present and probable future uses, pure cannabinoids, administered orally, rectally or parenterally, have been shown to be effective, and they are free of the risks of chronic inflammatory disease of the airways and upper respiratory cancer that are associated with the smoking of crude cannabis. Smoking might be justified on compassionate grounds in terminally ill patients who are already accustomed to using cannabis in this manner. Future research will probably yield new synthetic analogues with better separation of therapeutic effects from undesired psychoactivity and other side effects, and with solubility properties that may permit topical administration in the eye, or aerosol inhalation for rapid systemic effect without the risks associated with smoke inhalation.”

http://www.ncbi.nlm.nih.gov/pubmed/11854770

Pharmacokinetics and pharmacodynamics of cannabinoids.

Abstract

“Delta(9)-Tetrahydrocannabinol (THC) is the main source of the pharmacological effects caused by the consumption of cannabis, both the marijuana-like action and the medicinal benefits of the plant. However, its acid metabolite THC-COOH, the non-psychotropic cannabidiol (CBD), several cannabinoid analogues and newly discovered modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoids exert many effects through activation of G-protein-coupled cannabinoid receptors in the brain and peripheral tissues. Additionally, there is evidence for non-receptor-dependent mechanisms. Natural cannabis products and single cannabinoids are usually inhaled or taken orally; the rectal route, sublingual administration, transdermal delivery, eye drops and aerosols have only been used in a few studies and are of little relevance in practice today. The pharmacokinetics of THC vary as a function of its route of administration. Pulmonary assimilation of inhaled THC causes a maximum plasma concentration within minutes, psychotropic effects start within seconds to a few minutes, reach a maximum after 15-30 minutes, and taper off within 2-3 hours. Following oral ingestion, psychotropic effects set in with a delay of 30-90 minutes, reach their maximum after 2-3 hours and last for about 4-12 hours, depending on dose and specific effect. At doses exceeding the psychotropic threshold, ingestion of cannabis usually causes enhanced well-being and relaxation with an intensification of ordinary sensory experiences. The most important acute adverse effects caused by overdosing are anxiety and panic attacks, and with regard to somatic effects increased heart rate and changes in blood pressure. Regular use of cannabis may lead to dependency and to a mild withdrawal syndrome. The existence and the intensity of possible long-term adverse effects on psyche and cognition, immune system, fertility and pregnancy remain controversial. They are reported to be low in humans and do not preclude legitimate therapeutic use of cannabis-based drugs. Properties of cannabis that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, sedation, improvement of mood, stimulation of appetite, antiemesis, lowering of intraocular pressure, bronchodilation, neuroprotection and induction of apoptosis in cancer cells.”

http://www.ncbi.nlm.nih.gov/pubmed/12648025

Cannabinoids in clinical practice.

Abstract

“Cannabis has a potential for clinical use often obscured by unreliable and purely anecdotal reports. The most important natural cannabinoid is the psychoactive tetrahydrocannabinol (delta9-THC); others include cannabidiol (CBD) and cannabigerol (CBG). Not all the observed effects can be ascribed to THC, and the other constituents may also modulate its action; for example CBD reduces anxiety induced by THC. A standardised extract of the herb may be therefore be more beneficial in practice and clinical trial protocols have been drawn up to assess this. The mechanism of action is still not fully understood, although cannabinoid receptors have been cloned and natural ligands identified. Cannabis is frequently used by patients with multiple sclerosis (MS) for muscle spasm and pain, and in an experimental model of MS low doses of cannabinoids alleviated tremor. Most of the controlled studies have been carried out with THC rather than cannabis herb and so do not mimic the usual clincal situation. Small clinical studies have confirmed the usefulness of THC as an analgesic; CBD and CBG also have analgesic and antiinflammatory effects, indicating that there is scope for developing drugs which do not have the psychoactive properties of THC. Patients taking the synthetic derivative nabilone for neurogenic pain actually preferred cannabis herb and reported that it relieved not only pain but the associated depression and anxiety. Cannabinoids are effective in chemotherapy-induced emesis and nabilone has been licensed for this use for several years. Currently, the synthetic cannabinoid HU211 is undergoing trials as a protective agent after brain trauma. Anecdotal reports of cannabis use include case studies in migraine and Tourette’s syndrome, and as a treatment for asthma and glaucoma. Apart from the smoking aspect, the safety profile of cannabis is fairly good. However, adverse reactions include panic or anxiety attacks, which are worse in the elderly and in women, and less likely in children. Although psychosis has been cited as a consequence of cannabis use, an examination of psychiatric hospital admissions found no evidence of this, however, it may exacerbate existing symptoms. The relatively slow elimination from the body of the cannabinoids has safety implications for cognitive tasks, especially driving and operating machinery; although driving impairment with cannabis is only moderate, there is a significant interaction with alcohol. Natural materials are highly variable and multiple components need to be standardised to ensure reproducible effects. Pure natural and synthetic compounds do not have these disadvantages but may not have the overall therapeutic effect of the herb.”

http://www.ncbi.nlm.nih.gov/pubmed/11152013

Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.

“Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions).

The well-known psychotropic effects of Delta(9)-tetrahydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetrahydrocannabinol.

Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol,

the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity.”

http://www.ncbi.nlm.nih.gov/pubmed/19729208

Phytocannabinoids as novel therapeutic agents in CNS disorders.

Abstract

“The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body’s endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB(1) receptors by the major pCB, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ(9)-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ(9)tetrahydrocannabivarin (Δ(9)-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ(9)-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ(9)-THC pCB-based medicines.”

http://www.ncbi.nlm.nih.gov/pubmed/21924288

Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects

“The roots of cannabis synergy.”

“Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL−1. They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant.”

“Cannabis has been a medicinal plant of unparalleled versatility for millennia, but whose mechanisms of action were an unsolved mystery until the discovery of tetrahydrocannabinol (THC), the first cannabinoid receptor, CB1, and the endocannabinoids, anandamide (arachidonoylethanolamide, AEA) and 2-arachidonoylglycerol (2-AG). While a host of phytocannabinoids were discovered in the 1960s: cannabidiol (CBD), cannabigerol (CBG), cannabichromene (CBC) (Gaoni and Mechoulam, cannabidivarin (CBDV) and tetrahydrocannabivarin (THCV), the overwhelming preponderance of research focused on psychoactive THC. Only recently has renewed interest been manifest in THC analogues, while other key components of the activity of cannabis and its extracts, the cannabis terpenoids, remain understudied. The current review will reconsider essential oil (EO) agents, their peculiar pharmacology and possible therapeutic interactions with phytocannabinoids.”

“Should positive outcomes result from such studies, phytopharmaceutical development may follow. The development of zero-cannabinoid cannabis chemotypes has provided extracts that will facilitate discernment of the pharmacological effects and contributions of different fractions. Breeding work has already resulted in chemotypes that produce 97% of monoterpenoid content as myrcene, or 77% as limonene (E. de Meijer, pers. comm.). Selective cross-breeding of high-terpenoid- and high-phytocannabinoid-specific chemotypes has thus become a rational target that may lead to novel approaches to such disorders as treatment-resistant depression, anxiety, drug dependency, dementia and a panoply of dermatological disorders, as well as industrial applications as safer pesticides and antiseptics. A better future via cannabis phytochemistry may be an achievable goal through further research of the entourage effect in this versatile plant that may help it fulfil its promise as a pharmacological treasure trove.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165946/

Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis.

 European Journal of Pharmacology “Pneumococcal meningitis is a life-threatening disease characterized by an acute infection affecting the pia matter, arachnoid and subarachnoid space. The intense inflammatory response is associated with a significant mortality rate and neurologic sequelae, such as, seizures, sensory-motor deficits and impairment of learning and memory.

The aim of this study was to evaluate the effects of acute and extended administration of cannabidiol on pro-inflammatory cytokines and behavioral parameters in adult Wistar rats submitted to pneumococcal meningitis.

The extended administration of cannabidiol at different doses reduced the TNF-α level in frontal cortex. Prolonged treatment with canabidiol, 10mg/kg, prevented memory impairment in rats with pneumococcal meningitis.

Although descriptive, our results demonstrate that cannabidiol has anti-inflammatory effects in pneumococcal meningitis and prevents cognitive sequel.”  https://www.ncbi.nlm.nih.gov/pubmed/23085269

“Although descriptive, our results demonstrate that chronic treatment with CBD plays an anti-inflammatory role in pneumococcal meningitis. Furthermore, it prevents cognitive damage, possibly representing a new pharmacological approach towards pneumococcal meningitis.” https://www.sciencedirect.com/science/article/pii/S0014299912008485?via%3Dihub

Marijuana: A cure for breast cancer

“Cannabis, or rather marijuana, has been known as an illegal drug that is used primarily to get “high” and has no other value. This is what many people have thought of marijuana for at least the last 75 years.

Over the years, numerous research studies have been conducted on cannabis and there were discussions about its medicinal benefits for cancer treatment; however, because this is an illegal drug, much of the research hasn’t been known to the average citizen.

Within the last 10-15 years, the interest in cannabis as a possible cure for cancer has increased substantially. In addition, there has been an increase in citizens demanding the ability to use medicinal cannabis as a treatment for their disease or illness.

These recent studies have shown that cannabis may be a cure for cancer.  One study
conducted in 2007 by the California Pacific Medical Center in San Francisco, CA determined that a compound in cannabis called “Cannabidiol” was effective at inhibiting aggressive breast cancers. It was discovered that a certain “key gene caused breast cancer to spread and that cannabidiol could inhibit that aggressive gene by stopping the spread of the tumor cells”.  This study was published in the Washington Post and Science Daily
as well.

Unfortunately, cannabis is a schedule 1 drug which means that additional research and FDA approval would be required for cannabis to be used for the treatment of cancer.  It would require the removal of cannabis as a schedule 1 drug.

There is information that may suggest the U.S. Government and the Drug Enforcement Agency (DEA) may have already known about the benefits of cannabis to treat cancer. The National Cancer Institute published a study in 1974. Due to federal law, no further studies were conducted until the 1990’s. All research conducted since then has been via test tube and animal studies.

In an October 2003 review on test tube and animal research indicated that cannabinoids inhibit tumors of the lung, uterus, skin, breast, prostate, and brain. Cannabis is also known to provide nausea relief to cancer patients and to increase appetite.

Medicinal cannabis may be the cure for cancer. Additional research is needed; however, it may require reclassifying cannabis in order to obtain government approval.”

http://www.examiner.com/article/marijuana-a-cure-for-breast-cancer

Marijuana compound could help fight breast cancer – ABC News

“There may be a new weapon in the fight against aggressive forms of breast cancer in the future, and it comes from an unlikely source: Marijuana. Researchers at California Pacific Medical Center in San Francisco believe a compound in marijuana may help.

The research funded by the California Breast Cancer Research Program builds on more than a decade of studies involving the genes responsible for the spread of cancer. Now scientists have found at the cellular level, a compound in cannabis inhibits the gene that controls the spread of cancer.

“The problem is not the cancer itself, the problem is the spread of the cancer,” said cancer researcher Yvez Desprez, Ph.D.

Cancer researcher Pierre Desprez points to the gene ID-1 as the trigger.

“When this type of gene is expressed, the cells basically go crazy and they’re very aggressive and they metastasize everywhere in the body,” said Desprez.

“We could expect that if we create really effective inhibitors against it, we could potentially treat many types of aggressive cancers,” said cancer researcher Sean McAllister, Ph.D.

Their research in breast cancer cell lines focused on using a non-toxic compound in cannabis to target the ID-1 gene.

“What we found was cannabidiol is a particularly good inhibitor of this gene that’s responsible for the ability of cancer cells to become very aggressive,” said McAllister.”

http://abclocal.go.com/kgo/story?section=news/health&id=5771385