Can Physical Activity Support the Endocannabinoid System in the Preventive and Therapeutic Approach to Neurological Disorders?

ijms-logo“The worldwide prevalence of neurological and neurodegenerative disorders, such as depression or Alzheimer’s disease, has spread extensively throughout the last decades, becoming an enormous health issue.

Numerous data indicate a distinct correlation between the altered endocannabinoid signaling and different aspects of brain physiology, such as memory or neurogenesis. Moreover, the endocannabinoid system is widely regarded as a crucial factor in the development of neuropathologies. Thus, targeting those disorders via synthetic cannabinoids, as well as phytocannabinoids, becomes a widespread research issue.

Over the last decade, the endocannabinoid system has been extensively studied for its correlation with physical activity. Recent data showed that physical activity correlates with elevated endocannabinoid serum concentrations and increased cannabinoid receptor type 1 (CB1R) expression in the brain, which results in positive neurological effects including antidepressant effect, ameliorated memory, neuroplasticity development, and reduced neuroinflammation. However, none of the prior reviews presented a comprehensive correlation between physical activity, the endocannabinoid system, and neuropathologies.

Thus, our review provides a current state of knowledge of the endocannabinoid system, its action in physical activity, as well as neuropathologies and a possible correlation between all those fields. We believe that this might contribute to finding a new preventive and therapeutic approach to both neurological and neurodegenerative disorders.”

https://pubmed.ncbi.nlm.nih.gov/32545780/

https://www.mdpi.com/1422-0067/21/12/4221

The Role of Cannabinoids in Allergic Diseases

 International Archives of Allergy and Immunology - Home - Karger ...“The human endocannabinoid system (ECS) is a complex signalling network involved in many key physiological processes. The ECS includes the cannabinoid receptors, the endocannabinoid ligands, and the enzymes related to their synthesis and degradation.

Other cannabinoids encompass the phytocannabinoids from Cannabis sativaL.(marijuana) and the synthetic cannabinoids. Alterations in the ECS are associated with different diseases, including inflammatory and immune-mediated disorders such as allergy.

Allergy is a global health problem of increasing prevalence with high socio-economic impact. Different studies have convincingly demonstrated that cannabinoids play a role in allergy, but their actual contribution is still controversial. It has been shown that cannabinoids exert anti-inflammatory properties in the airways and the skin of allergic patients.

A better understanding of the molecular mechanisms involved in the mode of action of specific cannabinoids and cannabinoid receptors on relevant immune cells under different biological contexts might well contribute to the design of novel strategies for the prevention and treatment of allergic diseases. Future research in this promising emerging field in the context of allergy is warranted for the upcoming years.”

https://pubmed.ncbi.nlm.nih.gov/32526734/

“Different studies have convincingly demonstrated the anti-inflammatory properties exerted by cannabinoids in the airways and the skin in the context of allergic diseases both in mice and humans.”

https://www.karger.com/Article/FullText/508989

/WebMaterial/ShowPic/1201301

Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs

biomolecules-logo“Obesity rates are increasing worldwide and there is a need for novel therapeutic treatment options.

The endocannabinoid system has been linked to homeostatic processes, including metabolism, food intake, and the regulation of body weight.

Rimonabant, an inverse agonist for the cannabinoid CB1 receptor, was effective at producing weight loss in obese subjects. However, due to adverse psychiatric side effects, rimonabant was removed from the market.

More recently, we reported an inverse relationship between cannabis use and BMI, which has now been duplicated by several groups.

As those results may appear contradictory, we review here preclinical and clinical studies that have studied the impact on body weight of various cannabinoid CB1 drugs. Notably, we will review the impact of CB1 inverse agonists, agonists, partial agonists, and neutral antagonists.

Those findings clearly point out the cannabinoid CB1 as a potential effective target for the treatment of obesity. Recent preclinical studies suggest that ligands targeting the CB1 may retain the therapeutic potential of rimonabant without the negative side effect profile. Such approaches should be tested in clinical trials for validation.”

https://pubmed.ncbi.nlm.nih.gov/32512776/

https://www.mdpi.com/2218-273X/10/6/855

Endocannabinoid-Mediated Neuromodulation in the Olfactory Bulb: Functional and Therapeutic Significance.

ijms-logo “Endocannabinoid synthesis in the human body is naturally occurring and on-demand.

It occurs in response to physiological and environmental stimuli, such as stress, anxiety, hunger, other factors negatively disrupting homeostasis, as well as the therapeutic use of the phytocannabinoid cannabidiol and recreational use of exogenous cannabis.

Together with their specific receptors CB1R and CB2R, endocannabinoids are major components of endocannabinoid-mediated neuromodulation in a rapid and sustained manner. Extensive research on endocannabinoid function and expression includes studies in limbic system structures such as the hippocampus and amygdala.

The wide distribution of endocannabinoids, their on-demand synthesis at widely different sites, their co-existence in specific regions of the body, their quantitative differences in tissue type, and different pathological conditions indicate their diverse biological functions that utilize specific and overlapping pathways in multiple organ systems.

Here, we review emerging evidence of these pathways with a special emphasis on the role of endocannabinoids in decelerating neurodegenerative pathology through neural networks initiated by cells in the main olfactory bulb.”

https://www.ncbi.nlm.nih.gov/pubmed/32325875

https://www.mdpi.com/1422-0067/21/8/2850

Endocannabinoids and Stroke Prevention: Review of Clinical Studies.

View details for Cannabis and Cannabinoid Research cover image“The societal burden of ischemic stroke suggests a need for additional therapeutic categories in stroke prevention.

Modulation of the endocannabinoid system (ECS) is a rational target for stroke prevention because of its effects on inflammation, vascular tone, and metabolic balance, all well-described stroke risk factors.

In this article, we summarize the existing ECS clinical studies in human subjects’ research as they relate to conventional vascular risk factors associated with ischemic stroke.”

https://www.ncbi.nlm.nih.gov/pubmed/32322672

https://www.liebertpub.com/doi/10.1089/can.2018.0066

“The endocannabinoid system and stroke: A focused review. This review seeks to summarize the recent evidence for the role of the endocannabinoid signaling system in stroke pathophysiology, as well as the evidence from preclinical studies regarding the efficacy of cannabinoids as neuroprotective therapies in the treatment of stroke.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458776/

Chronic Psychosocial Stress Causes Increased Anxiety-Like Behavior and Alters Endocannabinoid Levels in the Brain of C57Bl/6J Mice.

View details for Cannabis and Cannabinoid Research cover image“Chronic stress causes a variety of physiological and behavioral alterations, including social impairments, altered endocrine function, and an increased risk for psychiatric disorders. Thereby, social stress is one of the most effective stressful stimuli among mammals and considered to be one of the major risk factors for the onset and progression of neuropsychiatric diseases.

Although the chronic social defeat stress model has been extensively studied, little is known about the effects of repeated or chronic social defeat stress on the endocannabinoid system (ECS).

The present study aimed to understand the effects of chronic social stress on anxiety behavior and the levels of endocannabinoids (ECs) and two N-acylethanolamines (NAEs) in different brain regions of mice.

 

The current study confirms that the ECS plays an essential role in stress responses, whereby its modulation seems to be brain region dependent.”

https://www.ncbi.nlm.nih.gov/pubmed/32322676

https://www.liebertpub.com/doi/10.1089/can.2019.0041

“Deficiency in endocannabinoid signaling in the nucleus accumbens induced by chronic unpredictable stress.” https://www.ncbi.nlm.nih.gov/pubmed/20664582

“Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.” https://www.ncbi.nlm.nih.gov/pubmed/23426383

“Blunted stress reactivity in chronic cannabis users.”  https://link.springer.com/article/10.1007/s00213-017-4648-z?no-access=true

Molecular Mechanism and Cannabinoid Pharmacology.

 “Since antiquity, Cannabis has provoked enormous intrigue for its potential medicinal properties as well as for its unique pharmacological effects.

The elucidation of its major cannabinoid constituents, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), led to the synthesis of new cannabinoids (termed synthetic cannabinoids) to understand the mechanisms underlying the pharmacology of Cannabis.

These pharmacological tools were instrumental in the ultimate discovery of the endogenous cannabinoid system, which consists of CB1 and CB2 cannabinoid receptors and endogenously produced ligands (endocannabinoids), which bind and activate both cannabinoid receptors.

CB1 receptors mediate the cannabimimetic effects of THC and are highly expressed on presynaptic neurons in the nervous system, where they modulate neurotransmitter release. In contrast, CB2 receptors are primarily expressed on immune cells.

The endocannabinoids are tightly regulated by biosynthetic and hydrolytic enzymes. Accordingly, the endocannabinoid system plays a modulatory role in many physiological processes, thereby generating many promising therapeutic targets.

An unintended consequence of this research was the emergence of synthetic cannabinoids sold for human consumption to circumvent federal laws banning Cannabis use. Here, we describe research that led to the discovery of the endogenous cannabinoid system and show how knowledge of this system benefitted as well as unintentionally harmed human health.”

https://www.ncbi.nlm.nih.gov/pubmed/32236882

https://link.springer.com/chapter/10.1007%2F164_2019_298

Editorial: The Canonical and Non-Canonical Endocannabinoid System as a Target in Cancer and Acute and Chronic Pain

frontiers in pharmacology – Retraction Watch“The endocannabinoid system (ECS) comprises the canonical receptor subtypes CB1R and CB2R and endocannabinoids (anandamide, AEA and 2-arachidonoylglycerol, 2-AG), and a “non-canonical” extended signaling network consisting of: (i) other fatty acid derivatives; (ii) the defined “ionotropic cannabinoid receptors” (TRP channels); other GPCRs (GPR55, PPARα); (iii) enzymes involved in the biosynthesis and degradation of endocannabinoids (FAAH and MAGL); and (iv) protein transporters (FABP family).The ECS is currently a hot topic due to its involvement in cancer and pain.

The current Research Topic highlights various ways the endocannabinoid system (ECS) can impact cancer and pain. Ramer et al. review the anticancer potential of the canonical and noncanonical endocannabinoid system. Morales and Jagerovic provide a much needed summary of cannabinoid ligands as promising antitumor agents in a wide variety of tumors, in contrast to their palliative applications. In their article, the authors classify cannabinoids with anticancer potential in endocannabinoids, phytocannabinoids, and synthetic cannabinoids. Moreno et al. in their review explored the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers, showing the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it.

As an ensemble, these studies provide further fuel to the discussion and underline the potential for targeting the ECS at multiple levels to treat certain cancers and for pain relief. Importantly, they also help to move the focal point of the discussion beyond THC, CBD, and the cannonical receptors. Several of these reports either review or provide data to support the use of/targeting of other members of the ECS system as well as alternative natural products beyond THC and CBD.”

https://www.frontiersin.org/articles/10.3389/fphar.2020.00312/full

CSF levels of the endocannabinoid anandamide are reduced in patients with untreated narcolepsy type 1: a pilot study.

“The endocannabinoid system (ECs) is involved in excitatory/inhibitory balance mechanisms within the CNS.

Growing evidence shows that endocannabinoids may influence both hypothalamic orexinergic and histaminergic neurons involved in narcolepsy physiopathology, thus indicating that endocannabinoids may play an intrinsic role modulating sleep and wake.

We hypothesize that the endocannabinoid system is dysregulated in narcolepsy type 1 (NT1).”

https://www.ncbi.nlm.nih.gov/pubmed/32148204

http://www.eurekaselect.com/180033/article

“Taking together, these findings suggest that CBD might prevent sleepiness in narcolepsy.” https://www.ncbi.nlm.nih.gov/pubmed/31642794

Endocannabinoid system and cardiometabolic risk factors: A comprehensive systematic review insight into the mechanistic effects of omega-3 fatty acids.

Life Sciences“Increased levels of endocannabinoids, 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA) have a pathophysiological role in the setting of cardiometabolic diseases. This systematic review was carried out to appraise the effect of omega-3 on cardiometabolic risk factors by highlighting the mediating effect of endocannabinoids.

Eleven animal studies and two human studies showed a marked reduction in 2-AG and AEA levels following intake of omega-3 which correlated with decreased adiposity, weight gain and improved glucose homeostasis. Moreover, endocannabinoids were elevated in three studies that replaced omega-3 with omega-6.

Omega-3 showed anti-inflammatory properties due to reduced levels of inflammatory cytokines, regulation of T-cells function and increased levels of eicosapentaenoyl ethanolamide, docosahexaenoyl ethanolamide and oxylipins; however, a limited number of studies examined a correlation between inflammatory cytokines and endocannabinoids following omega-3 administration.

In conclusion, omega-3 modulates endocannabinoid tone, which subsequently attenuates inflammation and cardiometabolic risk factors. However, further randomized clinical trials are needed before any recommendations are made to target the ECS using omega-3 as an alternative therapy to drugs for cardiometabolic disease improvement.”

https://www.ncbi.nlm.nih.gov/pubmed/32184122

“Endocannabinoid system (ECS) may mediate favorable effects of omega-3 fatty acids in cardiometabolic disorders. Omega-3 fatty acids showed anti-inflammatory effects due to increased levels of ethanolamide and oxylipins. Plant-derived omega-3 may be as effective as animal-derived omega-3 in ECS modulation. Omega-3 may have a potential to be an alternative to drugs for cardiometabolic disease improvement.”

https://www.sciencedirect.com/science/article/abs/pii/S0024320520303040?via%3Dihub