Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years.

Image result for frontiers in molecular neuroscience

“Cannabis extracts have been used for centuries, but its main active principle ∆9-tetrahydrocannabinol (THC) was identified about 50 years ago. Yet, it is only 25 years ago that the first endogenous ligand of the same receptors engaged by the cannabis agents was discovered. This “endocannabinoid (eCB)” was identified as N-arachidonoylethanolamine (or anandamide (AEA)), and was shown to have several receptors, metabolic enzymes and transporters that altogether drive its biological activity. Here I report on the latest advances about AEA metabolism, with the aim of focusing open questions still awaiting an answer for a deeper understanding of AEA activity, and for translating AEA-based drugs into novel therapeutics for human diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/28611591

http://journal.frontiersin.org/article/10.3389/fnmol.2017.00166/full

Medicinal Uses of Marijuana and Cannabinoids

Publication Cover

“In the past two decades, there has been increasing interest in the therapeutic potential of cannabis and single cannabinoids, mainly cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC). THC and cannabis products rich in THC exert their effects mainly through the activation of cannabinoid receptors (CB1 and CB2). Since 1975, 140 controlled clinical trials using different cannabinoids or whole-plant preparations for the treatment of a large number of disorders and symptoms have been conducted. Results have led to the approval of cannabis-based medicines [dronabinol, nabilone, and the cannabis extract nabiximols (Sativex®, THC:CBD = 1:1)] as well as cannabis flowers in several countries. Controlled clinical studies provide substantial evidence for the use of cannabinoid receptor agonists in cancer chemotherapy induced nausea and vomiting, appetite loss and cachexia in cancer and HIV patients, neuropathic and chronic pain, and in spasticity in multiple sclerosis. In addition, there is also some evidence suggesting a therapeutic potential of cannabis-based medicines in other indications including Tourette syndrome, spinal cord injury, Crohn’s disease, irritable bowel syndrome, and glaucoma. In several other indications, small uncontrolled and single-case studies reporting beneficial effects are available, for example in posttraumatic stress disorder, attention deficit hyperactivity disorder, and migraine. The most common side effects of THC and cannabis-based medicines rich in THC are sedation and dizziness (in more than 10% of patients), psychological effects, and dry mouth. Tolerance to these side effects nearly always develops within a short time. Withdrawal symptoms are hardly ever a problem in the therapeutic setting. In recent years there is an increasing interest in the medical use of CBD, which exerts no intoxicating side effects and is usually well-tolerated. Preliminary data suggest promising effects in the treatment of anxiety disorders, schizophrenia, dystonia, and some forms of epilepsy. This review gives an overview on clinical studies which have been published over the past 40 years.”

http://www.tandfonline.com/doi/abs/10.1080/07352689.2016.1265360?needAccess=true&journalCode=bpts20

“Review Identifies 140 Controlled Clinical Trials Related to Cannabis”  http://blog.norml.org/2017/06/04/review-identifies-140-controlled-clinical-trials-related-to-cannabis/

Study shows non-hallucinogenic cannabinoids are effective anti-cancer drugs

Related image

“New research has shown that the non-hallucinogenic components of cannabis could act as effective anti-cancer agents. The anti-cancer properties of tetrahydrocannabinol (THC), the primary hallucinogenic component of cannabis, has been recognised for many years, but research into similar cannabis-derived compounds, known as cannabinoids, has been limited.

The study was carried out by a team at St George’s, University of London. It has been published in the journal Anticancer Research. The team, led by Dr Wai Liu and colleagues carried out laboratory investigations using a number of cannabinoids, either alone or in combination with each other, to measure their anti-cancer actions in relation to leukaemia.

Of six cannabinoids studied, each demonstrated anti-cancer properties as effective as those seen in THC. Importantly, they had an increased effect on cancer cells when combined with each other.

Dr Liu said: “This study is a critical step in unpicking the mysteries of cannabis as a source of medicine. The cannabinoids examined have minimal, if any, hallucinogenic side effects, and their properties as anti-cancer agents are promising.

“These agents are able to interfere with the development of cancerous cells, stopping them in their tracks and preventing them from growing. In some cases, by using specific dosage patterns, they can destroy cancer cells on their own.

“Used in combination with existing treatment, we could discover some highly effective strategies for tackling cancer. Significantly, these compounds are inexpensive to produce and making better use of their unique properties could result in much more cost effective anti-cancer drugs in future.”

The study examined two forms of cannabidiol (CBD), two forms of cannabigerol (CBG) and two forms of cannabigevarin (CBGV). These represent the most common cannabinoids found in the cannabis plant apart from THC.” https://www.sgul.ac.uk/alumni/magazine/study-shows-non-hallucinogenic-cannabinoids-are-effective-anti-cancer-drugs

“Enhancing the Activity of Cannabidiol and Other Cannabinoids In Vitro Through Modifications to Drug Combinations and Treatment Schedules”  http://ar.iiarjournals.org/content/33/10/4373.abstract

“Non-hallucinogenic cannabinoids are effective anti-cancer drugs” https://www.sciencedaily.com/releases/2013/10/131014094105.htm

“Cannabinoids used in sequence with chemotherapy are a more effective treatment for cancer. New research has confirmed that cannabinoids – the active chemicals in cannabis – are effective in killing leukaemia cells, particularly when used in combination with chemotherapy treatments.” https://www.sgul.ac.uk/news/news-archive/cannabinoids-used-in-sequence-with-chemotherapy-are-a-more-effective-treatment-for-cancer
 
“Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration.” https://www.ncbi.nlm.nih.gov/pubmed/28560402

Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration.

Journal Cover

“Phytocannabinoids possess anticancer activity when used alone, and a number have also been shown to combine favourably with each other in vitro in leukaemia cells to generate improved activity.

We have investigated the effect of pairing cannabinoids and assessed their anticancer activity in cell line models. Those most effective were then used with the common anti-leukaemia drugs cytarabine and vincristine, and the effects of this combination therapy on cell death studied in vitro.

Results show a number of cannabinoids could be paired together to generate an effect superior to that achieved if the components were used individually.

For example, in HL60 cells, the IC50 values at 48 h for cannabidiol (CBD) and tetrahydrocannabinol (THC) when used alone were 8 and 13 µM, respectively; however, if used together, it was 4 µM. Median-effect analysis confirmed the benefit of using cannabinoids in pairs, with calculated combination indices being <1 in a number of cases.

The most efficacious cannabinoid-pairs subsequently synergised further when combined with the chemotherapy agents, and were also able to sensitise leukaemia cells to their cytotoxic effects.

The sequence of administration of these drugs was important though; using cannabinoids after chemotherapy resulted in greater induction of apoptosis, whilst this was the opposite when the schedule of administration was reversed.

Our results suggest that when certain cannabinoids are paired together, the resulting product can be combined synergistically with common anti-leukaemia drugs allowing the dose of the cytotoxic agents to be dramatically reduced yet still remain efficacious. Nevertheless, the sequence of drug administration is crucial to the success of these triple combinations and should be considered when planning such treatments.”

The endocannabinoid system as a target for addiction treatment: Trials and tribulations.

Cover image

“Addiction remains a major public health concern, and while pharmacotherapies can be effective, clinicians are limited by the paucity of existing interventions. Endocannabinoid signaling is involved in reward and addiction, which raises the possibility that drugs targeting this system could be used to treat substance use disorders. This review discusses findings from randomized controlled trials evaluating cannabinergic medications for addiction.

Current evidence suggests that pharmacotherapies containing delta-9-tetrahydrocannabinol, such as dronabinol and nabiximols, are effective for cannabis withdrawal. Dronabinol may also reduce symptoms of opioid withdrawal. The cannabinoid receptor 1 (CB1) inverse agonist rimonabant showed promising effects for smoking cessation but also caused psychiatric side effects and currently lacks regulatory approval. Few trials have investigated cannabinergic medications for alcohol use disorder.

Overall, the endocannabinoid system remains a promising target for addiction treatment. Development of novel medications such as fatty acid amide hydrolase inhibitors and neutral CB1 antagonists promises to extend the range of available interventions.”

https://www.ncbi.nlm.nih.gov/pubmed/28564576

http://www.sciencedirect.com/science/article/pii/S0028390817302563

Cannabinoid CB1/CB2 receptor agonists attenuate hyperactivity and body weight loss in a rat model of activity-based anorexia.

British Journal of Pharmacology

“Anorexia nervosa (AN) is a serious psychiatric condition characterized by excessive body weight loss and disturbed perceptions of body shape and size, often associated with excessive physical activity. There is currently no effective drug-related therapy of this disease and this leads to high relapse rate.

Clinical data suggest that a promising therapy to treat and reduce reoccurrence of AN may be based on the use of drugs that target the endocannabinoid (EC) system, which appears dysregulated in AN patients.

Our data show that subchronic treatment with both the CB1/CB2 receptor natural agonist Δ9-tetrahydrocannabinol and the synthetic CB1/CB2 receptor agonist CP-55,940 significantly reduced body weight loss and running wheel activity in ABA rats. These behavioral effects were accompanied by an increase in leptin signaling and a decrease in plasma levels of corticosterone.

Taken together, our results further demonstrate EC system involvement in AN pathophysiology and that strategies which modulate EC signaling are useful to treat this disorder, specifically in patients where physical hyperactivity plays a central role in its progression and maintenance.”

https://www.ncbi.nlm.nih.gov/pubmed/28561272

http://onlinelibrary.wiley.com/doi/10.1111/bph.13892/abstract

[Therapeutic potential of Cannabis sativa].

SciELO - Scientific Electronic Library Online

“Cannabis sativa (marihuana) is considered an illicit drug due to its psychoactive properties. Recently, the Chilean government opened to the use cannabis in the symptomatic treatment of some patients. The biological effects of cannabis render it useful for the complementary treatment of specific clinical situations such as chronic pain. We retrieved scientific information about the analgesic properties of cannabis, using it as a safe drug. The drug may block or inhibit the transmission of nervous impulses at different levels, an effect associated with pain control. Within this context and using adequate doses, forms and administration pathways, it can be used for chronic pain management, considering its effectiveness and low cost. It could also be considered as an alternative in patients receiving prolonged analgesic therapies with multiple adverse effects.”

Single and combined effects of delta9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain.

British Journal of Pharmacology

“It has been suggested that the non-psychoactive phytocannabinoid cannabidiol (CBD) can impact the pharmacological effects of delta-9-tetrahydrocannabinol (THC). We tested the hypothesis that CBD and THC would significantly mitigate mechanical sensitivity in a mouse model of paclitaxel-induced neuropathic pain, and that CBD+THC combinations would produce synergistic effects. We also tested the hypothesis that CBD would attenuate oxaliplatin- and vincristine- induced mechanical sensitivity.

KEY RESULTS:

Both CBD and THC alone attenuated mechanical allodynia in mice treated with paclitaxel. Very low ineffective doses of CBD and THC were synergistic when given in combination. CBD also attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity, while THC significantly attenuated vincristine- but not oxaliplatin-induced mechanical sensitivity. The low dose combination significantly attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity.

CONCLUSIONS AND IMPLICATIONS:

CBD may be potent and effective at preventing the development of CIPN, and its clinical utility may be enhanced by co-administration of low doses of THC. These treatment strategies would increase the therapeutic window of Cannabis-based pharmacotherapies.”

https://www.ncbi.nlm.nih.gov/pubmed/28548225

http://onlinelibrary.wiley.com/doi/10.1111/bph.13887/abstract

The Standard Joint Unit.

Image result for Drug Alcohol Depend.

“Reliable data on cannabis quantities is required to improve assessment of cannabis consumption for epidemiological analysis and clinical assessment, consequently a Standard Joint Unit (SJU) based on quantity of 9-Tetrahydrocannabinol (9-THC) has been established.

METHODOLOGY:

Naturalistic study of a convenience sample recruited from February 2015-June 2016 in universities, leisure spaces, mental health services and cannabis clubs in Barcelona. Adults, reporting cannabis use in the last 60 days, without cognitive impairment or language barriers, answered a questionnaire on cannabis use and were asked to donate a joint to further determine their 9-THC and Cannabidiol (CBD) content.

RESULTS:

492 participants donated 315 valid joints. Donators were on average 29 years old, mostly men (77%), single (75%), with at least secondary studies (73%) and in active employment (63%). Marijuana joints (N=232) contained a median of 6.56mg of 9-THC (Interquartile range-IQR=10,22) and 0.02mg of CBD (IQR=0.02); hashish joints (N=83) a median of 7.94mg of 9-THC (IQR=10,61) and 3.24mg of CBD (IQR=3.21). Participants rolled 4 joints per gram of cannabis and paid 5€ per gram (median values).

CONCLUSION:

Consistent 9-THC-content in joints lead to a SJU of 7mg of 9-THC, the integer number closest to the median values shared by both cannabis types. Independently if marijuana or hashish, 1 SJU = 1 joint = 0.25 g of cannabis = 7 mg of 9-THC. For CBD, only hashish SJU contained relevant levels. Similarly to the Standard Drink Unit for alcohol, the SJU is useful for clinical, epidemiological and research purposes.”

https://www.ncbi.nlm.nih.gov/pubmed/28531767

http://www.drugandalcoholdependence.com/article/S0376-8716(17)30194-1/fulltext

Cannabidiol in Medical Marijuana: Research Vistas and Potential Opportunities.

Cover image

“The high and increasing prevalence of medical marijuana consumption in the general population invites the need for quality evidence regarding its safety and efficacy. Herein, we synthesize extant literature pertaining to the phytocannabinoid cannabidiol (CBD) and its brain effects.

The principle phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) and CBD are the major pharmacologically active cannabinoids. The effect of CBD on brain systems as well as on phenomenological measures (e.g. cognitive function) are distinct and in many cases opposite to that of Δ9-THC.

Cannabidiol is without euphoriant properties, and exerts antipsychotic, anxiolytic, anti-seizure, as well as anti-inflammatory properties.

It is essential to parcellate phytocannabinoids into their constituent moieties as the most abundant cannabinoid have differential effects on physiologic systems in psychopathology measures. Disparate findings and reports related to effects of cannabis consumption reflect differential relative concentration of Δ9-THC and CBD.

Existing literature, notwithstanding its deficiencies, provides empirical support for the hypothesis that CBD may exert beneficial effects on brain effector systems/substrates subserving domain-based phenomenology. Interventional studies with purified CBD are warranted with a call to target-engagement proof-of-principle studies using the research domain criteria (RDoC) framework.” https://www.ncbi.nlm.nih.gov/pubmed/28501518

http://www.sciencedirect.com/science/article/pii/S1043661817303559