The cannabinoid CB₂ receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain.

European Neuropsychopharmacology Home

“The widespread plant volatile beta-caryophyllene (BCP) was recently identified as a natural selective agonist of the peripherally expressedcannabinoid receptor 2 (CB₂).

…the natural plant product BCP may be highly effective in the treatment of long lasting, debilitating pain states. Our results have important implications for the role of dietary factors in the development and modulation of chronic pain conditions.

Cannabis preparations, which have been used since thousands of years for the treatment of pain have recently come again into the focus as potential therapeutics for inflammatory and neuropathic pain conditions. Currently, cannabis extracts and synthetic preparations of the psychoactive cannabis compound Δ9-tetrahydrocannabinol (THC) have been approved in many countries for clinical pain management at doses and formulations that show on only minor central side effects…

A natural selective agonist for CB2 receptors is the plant volatile BCP, which represents a dietary phytocannabinoid. BCP is found in large amounts in the essential oils of many common spices and food plants… Several health effects have been attributed to BCP or medicinal plants containing BCP, including anti-inflammatory, local anesthetic, anti-carcinogenic, anti-fibrotic and anxiolytic-like activity.

In the present study, we investigated the analgesic effects of BCP in formalin-induced inflammation model and in a model of neuropathic pain, which involves the partial ligation of the sciatic nerve… BCP is the first natural CB2 receptor agonist, which could orally reduce inflammatory responses in different animal models of pain.

Thus, it is likely that BCP belongs to a group of common plant natural products with major potential impact on human health.

The oral intake of this dietary cannabinoid with vegetable food could be advantageous in the daily routine clinical practice over synthetic cannabinoid agonists.”

http://www.europeanneuropsychopharmacology.com/article/S0924-977X(13)00302-7/fulltext

http://www.thctotalhealthcare.com/category/neuropathic-pain/

Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain.

Logo of molpain

“Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN) and neuropathic pain (NeP), our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor.

Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states.

One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoidreceptors (CB) are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ)-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state.

The prevention of microglial accumulation and activation in the dorsal spinal cord was associated with limited development of a neuropathic pain state.

Cannabinoids demonstrated antinociceptive effects in this mouse model of DPN.

These results suggest that such interventions may also benefit humans with DPN, and their early introduction may also modify the development of the NeP state.”  http://www.ncbi.nlm.nih.gov/pubmed/20236533

“Tetrahydrocannabinol (THC), a component in marijuana, acts at both CB1 and CB2 receptors, but other forms of cannabinoids such as cannabinol and cannabidiol act predominantly at CB2 receptors. Such CB2 agonists may be potential anti-inflammatory therapies, antagonizing the 2-AG-induced recruitment of microglia and impacting upon development of an inflammatory state. Such properties may permit the cannabinoids to act in the prevention of microglial activation, perhaps limiting the development of neuropathic pain.

The present data confirm the efficacy of cannabinoid agonists, both for the CB1 and CB2 receptor, in modulation of acute thermal and tactile hypersensitivity as features of neuropathic pain. Furthermore, CB1 agonism from the onset of the offending stimulus (diabetes) normally leading to neuropathic pain ameliorated the development of a neuropathic pain state.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845559/

http://www.thctotalhealthcare.com/category/neuropathic-pain/

 

The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe?

“In recent years, the endocannabinoid system has emerged as a new therapeutic target in variety of disorders associated with inflammation and tissue injury, including those of the neuronal, liver, renal and cardiovascular system.

The aim of the present review is to elucidate the effect of endocannabinoid system on ischemia reperfusion injury (IRI) in different organs and systems.

Expert opinion: CB2 receptors may play an important compensatory role in controlling tissue inflammation and injury in cells of the neuronal, cardiovascular, liver and renal systems, as well as in infiltrating monocytes/macrophages and leukocytes during various pathological conditions of the systems (atherosclerosis, restenosis, stroke, myocardial infarction, heart, liver and renal failure).

These receptors limit inflammation and associated tissue injury.

On the basis of preclinical results, pharmacological modulation of CB2 receptors may hold a unique therapeutic potential in stroke, myocardial infarction, atherosclerosis, IRI and liver disease.”

http://www.ncbi.nlm.nih.gov/pubmed/25936364

The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

“As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ9-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes.

Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy.

During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers.

In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors.

For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer.

This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells.

We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.”

Alkylindole-sensitive receptors modulate microglial cell migration and proliferation.

“Ligands targeting G protein-coupled receptors (GPCR) expressed by microglia have been shown to regulate distinct components of their activation process, including cell proliferation, migration and differentiation into M1 or M2 phenotypes.

Cannabinoids, including the active component of the Cannabis plant, tetrahydrocannabinol (THC), and the synthetic alkylindole (AI) compound, WIN55212-2 (WIN-2), activate two molecularly identified GPCRs: CB1 and CB2 .

Our results suggest that microglia express functional AI-sensitive receptors that control select components of their activation process.

Agonists of these novel targets might represent a novel class of therapeutics to influence the microglial cell activation process. ”

http://www.ncbi.nlm.nih.gov/pubmed/25914169

Cannabidiol, a non-psychoactive component of cannabis and its synthetic dimethylheptyl homolog suppress nausea in an experimental model with rats.

“Rats display conditioned rejection reactions during an oral infusion of a flavor previously paired with an emetic drug; considerable evidence indicates that these rejection reactions reflect nausea.

Here we report that cannabidiol, a major non-psychoactive cannabinoid found in marijuana and its synthetic dimethylheptyl homolog interfere with nausea elicited by lithium chloride and with conditioned nausea elicited by a flavor paired with lithium chloride.

These results suggest that cannabinoids without psychoactive side-effects may have therapeutic value in the treatment of chemotherapy-induced nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/11973447

http://www.thctotalhealthcare.com/category/nauseavomiting/

Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders.

“Cannabidiol (CBD) is the main non-psychotropic component of the glandular hairs of Cannabis sativa.

It displays a plethora of actions including anticonvulsive, sedative, hypnotic, antipsychotic, antiinflammatory and neuroprotective properties.

However, it is well established that CBD produces its biological effects without exerting significant intrinsic activity upon cannabinoid receptors.

For this reason, CBD lacks the unwanted psychotropic effects characteristic of marijuana derivatives, so representing one of the bioactive constituents of Cannabis sativa with the highest potential for therapeutic use.

The present review reports the pharmacological profile of CBD and summarizes results from preclinical and clinical studies utilizing CBD, alone or in combination with other phytocannabinoids, for the treatment of a number of CNS disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/18844286

Therapeutic potential of cannabis in pain medicine†

BJA

“Cannabis has been of medicinal and social significance for millennia.

It is obtained from Cannabis sativa and the plant’s name reflects its ancient use—cannabis may represent a compound of Sanskrit and Hebrew words meaning ‘fragrant cane’, while sativa is Latin for cultivated.

Cannabis is also known as hemp.

Marijuana describes the dried cannabis flowers and leaves which are smoked, while hashish refers to blocks of cannabis resin which can be eaten.

Advances in cannabis research have paralleled developments in opioid pharmacology whereby a psychoactive plant extract has elucidated novel endogenous signalling systems with therapeutic significance.

Cannabinoids (CBs) are chemical compounds derived from cannabis.

This review discusses the basic science and clinical aspects of CB pharmacology with a focus on pain medicine.

Advances in cannabis research have ensured a future for these analgesic molecules which have been used since antiquity.”

http://bja.oxfordjournals.org/content/101/1/59.long

http://www.thctotalhealthcare.com/category/pain-2/

Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception.

Logo of nihpa

“Cannabis has been used for thousands of years as a therapeutic agent for pain relief, as well as for recreational purposes.

Delta-9-Tetrahydrocannabinol (Δ9-THC)… produces antinociceptive effects in a wide range of preclinical assays of pain.

Considerable preclinical research has demonstrated the efficacy of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the primary psychoactive constituent of Cannabis sativa, in a wide variety of animal models of pain, but few studies have examined other phytocannabinoids.

Indeed, other plant-derived cannabinoids, including cannabidiol (CBD), cannabinol (CBN), and cannabichromene (CBC) elicit antinociceptive effects in some assays. In contrast, tetrahydrocannabivarin (THCV), another component of cannabis, antagonizes the pharmacological effects of Delta(9)-THC.

These results suggest that various constituents of this plant may interact in a complex manner to modulate pain.

The primary purpose of the present study was to assess the antinociceptive effects of these other prevalent phytocannabinoids in the acetic acid stretching test, a rodent visceral pain model…

Importantly, the antinociceptive effects of Delta(9)-THC and CBN occurred at lower doses than those necessary to produce locomotor suppression, suggesting motor dysfunction did not account for the decreases in acetic acid-induced abdominal stretching.

These data raise the intriguing possibility that other constituents of cannabis can be used to modify the pharmacological effects of Delta(9)-THC by either eliciting antinociceptive effects (i.e., CBN) or antagonizing (i.e., THCV) the actions of Delta(9)-THC.

The results obtained in the present study are consistent with the view that Δ9-THC is the major phytocannabinoid present in marijuana that produces antinociception in the acetic acid abdominal stretching test.

…these results suggest that there is potential to develop medications containing various concentrations of specific phytocannabinoids to optimize therapeutic effects (e.g., antinociception) and minimize psychomimetic effects.

In sum, the results of the present study further support the notion that Δ9-THC is the predominant constituent of marijuana that is responsible for eliciting antinociceptive effects and indicate that CB1 receptors play a predominant role in mediating these effects.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765124/

http://www.thctotalhealthcare.com/category/pain-2/

The endocannabinoid system in obesity and type 2 diabetes.

“Endocannabinoids (ECs) are defined as endogenous agonists of cannabinoid receptors type 1 and 2 (CB1 and CB2). ECs, EC anabolic and catabolic enzymes and cannabinoid receptors constitute the EC signalling system. This system participates in the control of lipid and glucose metabolism at several levels, with the possible endpoint of the accumulation of energy as fat.

Following unbalanced energy intake, however, the EC system becomes dysregulated, and in most cases overactive, in several organs participating in energy homeostasis, particularly, in intra-abdominal adipose tissue. This dysregulation might contribute to excessive visceral fat accumulation and reduced adiponectin release from this tissue, and to the onset of several cardiometabolic risk factors that are associated with obesity and type 2 diabetes.

This phenomenon might form the basis of the mechanism of action of CB1 antagonists/inverse agonists, recently developed by several pharmaceutical companies as adjuvants to lifestyle modification for weight reduction, glycaemic control and dyslipidaemia in obese and type 2 diabetes patients.

It also helps to explain why some of the beneficial actions of these new therapeutics appear to be partly independent from weight loss.”

http://www.ncbi.nlm.nih.gov/pubmed/18563385

http://www.thctotalhealthcare.com/category/obesity-2/

http://www.thctotalhealthcare.com/category/diabetes/