Cannabis to lower blood pressure!

News Medical - Life Sciences & Medicine

“A new method for lowering blood pressure (hypertension) through use of a compound that synthesizes a cannabis (hashish) plant component has been developed by a pharmacology Ph.D. student at the Hebrew University of Jerusalem School of Pharmacy.

Cardiovascular disease (CVD) accounts for about one-third of all deaths in industrialized countries, and is the leading reason for visits there to physicians as well as for drug prescriptions. However, not all patients respond well to the drugs available. There is no “ideal’ hypotensive (blood pressure lowering) drug.

The cannabis plant – also known as hashish or marijuana – through its chemical compounds — cannabinoids — has been shown to have a beneficial, hypotensive effect.”

http://www.news-medical.net/news/2006/06/19/18517.aspx

Report shows relationship between sensation seeking, reward sensitivity and cannabis use

“Lowering Of Blood Pressure Achieved Through Use Of Hashish-like Drug”  http://www.sciencedaily.com/releases/2006/06/060620083025.htm

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

Characterization of Lignanamides from Hemp (Cannabis sativa L. ) Seed and their Antioxidant and Acetylcholinesterase Inhibitory Activities.

Image result for J Agric Food Chem.

“Hempseed is known for its content in fatty acids, proteins and fiber, which contribute to its nutritional value.

Here we studied the secondary metabolites of hempseed aiming at identifying bioactive compounds that could contribute to its health benefits.

This investigation led to the isolation of four new lignanamides cannabisin M, 2, cannabisin N, 5, cannabisin O, 8 and 3,3′-demethyl-heliotropamide, 10, together with ten known lignanamides, among which 4 was identified for the first time from hempseed.

Structures were established on the basis of NMR, HR-MS, UV, IR as well as by comparison with the literature data.

Lignanamides 2, 7, 9-14 showed good antioxidant activity among which 7, 10 and 13 also inhibited acetylcholinesterase in vitro.

The new identified compounds in this study added to the diversity of hempseed composition and the bioassays implied that hempseed, with lignanamides as nutrients, may be a good source of bioactive and protective compounds.”  http://www.ncbi.nlm.nih.gov/pubmed/26585089

“Alzheimer’s Disease (AD) is the most common single cause of dementia in our ageing society. On full assessment and diagnosis of AD, initiation of an AChe inhibitor is recommended as early as possible, it is important that AChe inhibitor therapy is considered for patients with mild to moderate AD.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014378/

 “The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia. Our results indicate that hempseed meal (HSM) and linoleic acid are potential candidates for the treatment of Alzheimer’s disease (AD) and cardiovascular disease. These results show that HSM may prove of great utility as a health food, with potential for the prevention of AD and cardiovascular disease.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933972/

A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats.

Logo of nutrients

“This report shows the antioxidant effects of a hemp seed meal protein hydrolysate (HMH) in spontaneously hypertensive rats (SHR)…

The results suggest that HMH contained antioxidant peptides that reduced the rate of lipid peroxidation in SHRs with enhanced antioxidant enzyme levels and total antioxidant capacity.”

http://www.ncbi.nlm.nih.gov/pubmed/25493943

“Cannabis sativa L., also commonly called industrial hemp seed, is historically an important source of food, fibre, dietary oil and medicine; the seed contains about 30% oil and 25% protein…

Proteins from both plant and animal sources, including those of hemp seed, have been isolated and recognized as essential sources of bioactive peptides capable of exerting various in vitro and in vivo activities, such as antioxidant, antihypertensive, antimicrobial, opioid, antithrombotic, hypocholesterolemic, appetite-reducing, mineral-binding, immunomodulatory and cytomodulatory…

HMH may serve as an important ingredient to formulate antioxidant diets with potential therapeutic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276990/

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

Reduction by Δ9-tetrahydrocannabinol in the blood pressure of hypertensive rats bearing regenerated adrenal glands

Image result for THC

“A suspension of (−)-Δ9-trans-tetrahydrocannabinol (Δ9-THC) was administered daily for one week by i.p. injection to female rats showing the syndrome of adrenal regeneration hypertension (ARH)…

The findings indicate that Δ9-THC, at a moderate dose for the rat, is capable of lowering the blood pressure in rats suffering from adrenal regeneration hypertension and that chronic administration of Δ9-THC does not appear to stimulate the pituitary-adrenal axis, in contrast to reported effects of acute administration.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1776093/

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

Endocannabinoid-mediated modulation of Gq/11 protein-coupled receptor signaling-induced vasoconstriction and hypertension.

“Activation of G protein-coupled receptors (GPCRs) can induce vasoconstriction via calcium signal-mediated and Rho-dependent pathways…

Our aim was to provide evidence that GPCR signaling-induced 2-AG production and activation of vascular type1 cannabinoid receptors (CB1R) is capable of reducing agonist-induced vasoconstriction and hypertension…

Pharmacological or genetic loss of CB1R function augmented AngII-induced blood pressure rise in mice.

These data demonstrate that vasoconstrictor effect of GPCR agonists is attenuated via Gq/11-mediated vascular endocannabinoid formation.

Agonist-induced endocannabinoid-mediated CB1R activation is a significant physiological modulator of vascular tone.

Thus, the selective modulation of GPCR signaling-induced endocannabinoid release has a therapeutic potential in case of increased vascular tone and hypertension.”

http://www.ncbi.nlm.nih.gov/pubmed/25595485

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

Δ(9)-THC and N-arachidonoyl glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for signaling at GPR18.

“Microglial cells are extremely plastic and undergo a variety of CNS-prompted shape changes relative to their location and current role. Signaling molecules from neurons also regulate microglial cytokine production. Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS.

N-arachidonoyl glycine (NAGly) and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) signaling via GPR18 has been introduced as an important new target in microglial-neuronal communication…

These data add to an emerging profile that emphasizes NAGly as a component of an endogenous system present in the CNS that tightly integrates microglial proliferation, recruitment, and adhesion with neuron-glia interactivity and tissue remodeling.”

http://www.ncbi.nlm.nih.gov/pubmed/24427137

The Novel Endocannabinoid Receptor GPR18 is Expressed in the Rostral Ventrolateral Medulla and Exerts Tonic Restraining Influence on Blood Pressure.

“Systemic administration of the GPR18 agonist abnormal cannabidiol (Abn CBD) lowers blood pressure (BP).

These findings are the first to demonstrate GPR18 expression in the RVLM, and to suggest sympathoinhibitory role for this receptor. The findings yield new insight into the role of a novel cannabinoid receptor (GPR18) in central BP control.”

http://www.ncbi.nlm.nih.gov/pubmed/24431468PR

Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats.

“This work determined the ability of hemp seed meal protein hydrolysate (HMH)-containing diets to attenuate elevated blood pressure (hypertension) development in spontaneously hypertensive rats (SHRs)…

CONCLUSIONS: The results suggest that HMH with strong hypotensive effects in SHRs could be used as a therapeutic agent for both the prevention and treatment of hypertension.”

http://www.ncbi.nlm.nih.gov/pubmed/24292743

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

The endocannabinoid system and its therapeutic exploitation.

Image result for Nat Rev Drug Discov.

“The term ‘endocannabinoid’ – originally coined in the mid-1990s after the discovery of membrane receptors for the psychoactive principle in Cannabis, Delta9-tetrahydrocannabinol and their endogenous ligands – now indicates a whole signalling system that comprises cannabinoid receptors, endogenous ligands and enzymes for ligand biosynthesis and inactivation. This system seems to be involved in an ever-increasing number of pathological conditions. With novel products already being aimed at the pharmaceutical market little more than a decade since the discovery of cannabinoid receptors, the endocannabinoid system seems to hold even more promise for the future development of therapeutic drugs. We explore the conditions under which the potential of targeting the endocannabinoid system might be realized in the years to come.”  http://www.ncbi.nlm.nih.gov/pubmed/15340387

http://www.nature.com/nrd/journal/v3/n9/full/nrd1495.html