Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days.

Nanomedicine Home

“Neuropathic pain, resistant to opiates and other drugs, is a chronic/persistent state with a complex treatment and often poor efficacy. In this scenario, cannabinoids are increasingly regarded as a genuine alternative. In this paper, and in an experimental animal model of neuropathic pain, we studied the efficacy of three kinds of PLGA nanoparticles containing synthetic cannabinoid CB13: (i) plain nanoparticles (PLGA); (ii) particles coated with PEG chains (PLGA+PEG) and (iii) particles possessing hydrophilic surfaces obtained by covalently binding PEG chains (PLGA-PEG). The optimized formulation, CB13-PLGA-PEG, showed high drug loading (13%) and small size (<300nm) with a narrow distribution and controlled surface properties (near-neutral zeta potential and stable PEG corona). Animal nociceptive behavioral studies were conducted by paw pressure and acetone tests. Versus the free CB13, CB13-PLGA-PEG nanoparticles showed a very noticeable analgesic efficacy with the longest sustained pain-relieving effect, lasting up to eleven days after one oral dose.”

https://www.ncbi.nlm.nih.gov/pubmed/28756090

http://www.nanomedjournal.com/article/S1549-9634(17)30140-5/fulltext

Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice.

Cover image

“Painful peripheral neuropathy is a common side effect of paclitaxel (PTX). The use of analgesics is an important component for management of PTX-induced peripheral neuropathy (PINP). However, currently employed analgesics have several side effects and are poorly effective.

β-caryophyllene (BCP), a dietary selective CB2 agonist, has shown analgesic effect in neuropathic pain models, but its role in chemotherapy-induced neuropathic pain has not yet been investigated. Herein, we used the mouse model of PINP to show the therapeutic effects of BCP in this neuropathy.

Our findings show that BCP effectively attenuated PINP, possibly through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release. Taken together, our results suggest that BCP could be used to attenuate the establishment and/or treat PINP.”  https://www.ncbi.nlm.nih.gov/pubmed/28729222

http://www.sciencedirect.com/science/article/pii/S0028390817303465

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Medicinal Uses of Marijuana and Cannabinoids

Publication Cover

“In the past two decades, there has been increasing interest in the therapeutic potential of cannabis and single cannabinoids, mainly cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC). THC and cannabis products rich in THC exert their effects mainly through the activation of cannabinoid receptors (CB1 and CB2). Since 1975, 140 controlled clinical trials using different cannabinoids or whole-plant preparations for the treatment of a large number of disorders and symptoms have been conducted. Results have led to the approval of cannabis-based medicines [dronabinol, nabilone, and the cannabis extract nabiximols (Sativex®, THC:CBD = 1:1)] as well as cannabis flowers in several countries. Controlled clinical studies provide substantial evidence for the use of cannabinoid receptor agonists in cancer chemotherapy induced nausea and vomiting, appetite loss and cachexia in cancer and HIV patients, neuropathic and chronic pain, and in spasticity in multiple sclerosis. In addition, there is also some evidence suggesting a therapeutic potential of cannabis-based medicines in other indications including Tourette syndrome, spinal cord injury, Crohn’s disease, irritable bowel syndrome, and glaucoma. In several other indications, small uncontrolled and single-case studies reporting beneficial effects are available, for example in posttraumatic stress disorder, attention deficit hyperactivity disorder, and migraine. The most common side effects of THC and cannabis-based medicines rich in THC are sedation and dizziness (in more than 10% of patients), psychological effects, and dry mouth. Tolerance to these side effects nearly always develops within a short time. Withdrawal symptoms are hardly ever a problem in the therapeutic setting. In recent years there is an increasing interest in the medical use of CBD, which exerts no intoxicating side effects and is usually well-tolerated. Preliminary data suggest promising effects in the treatment of anxiety disorders, schizophrenia, dystonia, and some forms of epilepsy. This review gives an overview on clinical studies which have been published over the past 40 years.”

http://www.tandfonline.com/doi/abs/10.1080/07352689.2016.1265360?needAccess=true&journalCode=bpts20

“Review Identifies 140 Controlled Clinical Trials Related to Cannabis”  http://blog.norml.org/2017/06/04/review-identifies-140-controlled-clinical-trials-related-to-cannabis/

The Analgesic Potential of Cannabinoids

 

Image result for Journal of Opioid Management

“Cannabinoids are derivatives of Cannabis sativa, the hemp plant, which evolved in the temperate regions of Central Asia. Cannabis was used as a medicine in ancient China (2700 BC) and India (1000 BC). Historically and anecdotally cannabinoids have been used as analgesic agents.

In recent years, there has been an escalating interest in developing cannabis-derived medications to treat severe pain. This review provides an overview of the history of cannabis use in medicine, cannabinoid signaling pathways, and current data from preclinical as well as clinical studies on using cannabinoids as potential analgesic agents. Clinical and experimental studies show that cannabis-derived compounds act as anti-emetic, appetite modulating and analgesic agents.

Since opioids are the only therapy for severe pain, analgesic ability of cannabinoids may provide a much-needed alternative to opioids. Moreover, cannabinoids act synergistically with opioids and act as opioid sparing agents, allowing lower doses and fewer side effects from chronic opioid therapy. Thus, rational use of cannabis based medications deserves serious consideration to alleviate the suffering of patients due to severe pain.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728280/

Single and combined effects of delta9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain.

British Journal of Pharmacology

“It has been suggested that the non-psychoactive phytocannabinoid cannabidiol (CBD) can impact the pharmacological effects of delta-9-tetrahydrocannabinol (THC). We tested the hypothesis that CBD and THC would significantly mitigate mechanical sensitivity in a mouse model of paclitaxel-induced neuropathic pain, and that CBD+THC combinations would produce synergistic effects. We also tested the hypothesis that CBD would attenuate oxaliplatin- and vincristine- induced mechanical sensitivity.

KEY RESULTS:

Both CBD and THC alone attenuated mechanical allodynia in mice treated with paclitaxel. Very low ineffective doses of CBD and THC were synergistic when given in combination. CBD also attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity, while THC significantly attenuated vincristine- but not oxaliplatin-induced mechanical sensitivity. The low dose combination significantly attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity.

CONCLUSIONS AND IMPLICATIONS:

CBD may be potent and effective at preventing the development of CIPN, and its clinical utility may be enhanced by co-administration of low doses of THC. These treatment strategies would increase the therapeutic window of Cannabis-based pharmacotherapies.”

https://www.ncbi.nlm.nih.gov/pubmed/28548225

http://onlinelibrary.wiley.com/doi/10.1111/bph.13887/abstract

Selective Cannabinoids for Chronic Neuropathic Pain: A Systematic Review and Meta-analysis.

Image result for Anesth Analg.

“There is a lack of consensus on the role of selective cannabinoids for the treatment of neuropathic pain (NP). Guidelines from national and international pain societies have provided contradictory recommendations. The primary objective of this systematic review and meta-analysis (SR-MA) was to determine the analgesic efficacy and safety of selective cannabinoids compared to conventional management or placebo for chronic NP.

METHODS:

We reviewed randomized controlled trials that compared selective cannabinoids (dronabinol, nabilone, nabiximols) with conventional treatments (eg, pharmacotherapy, physical therapy, or a combination of these) or placebo in patients with chronic NP because patients with NP may be on any of these therapies or none if all standard treatments have failed to provide analgesia and or if these treatments have been associated with adverse effects. MEDLINE, EMBASE, and other major databases up to March 11, 2016, were searched. Data on scores of numerical rating scale for NP and its subtypes, central and peripheral, were meta-analyzed. The certainty of evidence was classified using the Grade of Recommendations Assessment, Development, and Evaluation approach.

RESULTS:

Eleven randomized controlled trials including 1219 patients (614 in selective cannabinoid and 605 in comparator groups) were included in this SR-MA. There was variability in the studies in quality of reporting, etiology of NP, type and dose of selective cannabinoids. Patients who received selective cannabinoids reported a significant, but clinically small, reduction in mean numerical rating scale pain scores (0-10 scale) compared with comparator groups (-0.65 points; 95% confidence interval, -1.06 to -0.23 points; P = .002, I = 60%; Grade of Recommendations Assessment, Development, and Evaluation: weak recommendation and moderate-quality evidence). Use of selective cannabinoids was also associated with improvements in quality of life and sleep with no major adverse effects.

CONCLUSIONS:

Selective cannabinoids provide a small analgesic benefit in patients with chronic NP. There was a high degree of heterogeneity among publications included in this SR-MA. Well-designed, large, randomized studies are required to better evaluate specific dosage, duration of intervention, and the effect of this intervention on physical and psychologic function.”

Combined cannabinoid therapy via an oromucosal spray.

“Extensive basic science research has identified the potential therapeutic benefits of active compounds extracted from the Cannabis sativa L. plant (the cannabinoids). It is recognized that a significant proportion of patients suffering with the debilitating symptoms of pain and spasticity in multiple sclerosis or other conditions smoke cannabis despite the legal implications and stigma associated with this controlled substance. GW Pharmaceuticals have developed Sativex (GW- 1000-02), a combined cannabinoid medicine that delivers and maintains therapeutic levels of two principal cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), via an oromucosal pump spray, that aims to minimize psychotropic side effects.”  https://www.ncbi.nlm.nih.gov/pubmed/16969427

“Sativex has proved to be well tolerated and successfully self-administered and self-titrated in both healthy volunteers and patient cohorts. Clinical assessment of this combined cannabinoid medicine has demonstrated efficacy in patients with intractable pain (chronic neuropathic pain, pain due to brachial plexus nerve injury, allodynic peripheral neuropathic pain and advanced cancer pain), rheumatoid arthritis and multiple sclerosis (bladder problems, spasticity and central pain), with no significant intoxication-like symptoms, tolerance or withdrawal syndrome.”  https://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_summaryn_pr?p_JournalId=4&p_RefId=1021517

“Sativex(®) (nabiximols, USAN name) oromucosal spray contains the two main active constituents of Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 molecular ratio, and acts as an endocannabinoid system modulator.”  https://www.ncbi.nlm.nih.gov/pubmed/21449855

“Abuse potential and psychoactive effects of δ-9-tetrahydrocannabinol and cannabidiol oromucosal spray (Sativex), a new cannabinoid medicine. Evidence to date suggests that abuse or dependence on Sativex is likely to occur in only a very small proportion of recipients.” https://www.ncbi.nlm.nih.gov/pubmed/21542664

Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity

“The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. There is a great interest in the development of selective type-2 cannabinoid receptor (CB2R) agonists as potential drug candidates for various pathophysiological conditions, which include chronic and inflammatory pain, pruritus, diabetic neuropathy and nephropathy, liver cirrhosis, and protective effects after ischaemic-reperfusion injury.” https://www.nature.com/articles/ncomms13958

“Pain relief without the high. Researchers at Leiden University led by Mario van der Stelt (Leiden Institute for Chemistry) have set ‘gold standards’ for developing new painkillers based on the medicinal effects of cannabis.”  https://www.sciencedaily.com/releases/2017/01/170104103916.htm

ScienceDaily

Antihyperalgesic Activities of Endocannabinoids in a Mouse Model of Antiretroviral-Induced Neuropathic Pain.

Image result for Front Pharmacol.

“Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs.

Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy.

The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy.

Conclusion: These data show that ddC induces thermal hyperalgesia, which is associated with dysregulation of the mRNA expression of some endocannabinoid system molecules. The endocannabinoids AEA and 2-AG have antihyperalgesic activity, which is dependent on cannabinoid receptor and GPR55 activation. Thus, agonists of cannabinoid receptors and GPR55 could be useful therapeutic agents for the management of NRTI-induced painful sensory neuropathy.”

https://www.ncbi.nlm.nih.gov/pubmed/28373843

[Role of cannabinoid receptor 1-mediated synaptic plasticity in neuropathic pain and associated depression].

Image result for Medical School of Southeast University

“Neuropathic pain is a class of pain caused by an injury or diseases of the somatosensory system and characterized by spontaneous pain, allodynia, and hyperalgesia. It is well established that central sensitization is one of the key mechanisms underlying the development and maintenance of neuropathic pain. Cannabinoid receptor 1 (CB1R) of endocannabinoid system modulates synaptic transmission, regulates synaptic plasticity, inhibits central sensitization, and thus attenuates neuropathic pain. Recent studies have shown that activation of CB1R also involves in the relief of neuropathic pain-induced depression.” https://www.ncbi.nlm.nih.gov/pubmed/28364110