Cannabinoids Inhibit Glioma Cell Invasion by Down-regulating Matrix Metalloproteinase-2 Expression

Cancer Research: 68 (6)

“Cannabinoids, the active components of Cannabis sativa L. and their derivatives, inhibit tumor growth in laboratory animals by inducing apoptosis of tumor cells and impairing tumor angiogenesis.

It has also been reported that these compounds inhibit tumor cell spreading.

Here, we evaluated the effect of cannabinoids on matrix metalloproteinase (MMP) expression and its effect on tumor cell invasion.

Local administration of Δ9-tetrahydrocannabinol (THC), the major active ingredient of cannabis, down-regulated MMP-2 expression in gliomas generated in mice.

This cannabinoid-induced inhibition of MMP-2 expression in gliomas.

As MMP-2 up-regulation is associated with high progression and poor prognosis of gliomas and many other tumors, MMP-2 down-regulation constitutes a new hallmark of cannabinoid antitumoral activity.

As selective CB2 receptor activation to mice has been shown to inhibit the growth and angiogenesis of gliomas, skin carcinomas and melanomas, our observations further support the possibility of finding cannabinoid-based antitumoral strategies devoid of nondesired psychotropic side effects.”

http://cancerres.aacrjournals.org/content/68/6/1945

 

Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke.

pharmaceuticals-logo

“Cannabis contains the psychoactive component delta⁸-tetrahydrocannabinol (delta⁸-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol.

It is well-known that delta⁸-THC and other cannabinoid CB₁ receptor agonists are neuroprotective during global and focal ischemic injury.

Additionally, delta⁸-THC also mediates psychological effects through the activation of the CB₁ receptor in the central nervous system.

In addition to the CB₁ receptor agonists, cannabis also contains therapeutically active components which are CB₁ receptor independent.

Of the CB₁ receptor-independent cannabis, the most important is CBD.

In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD.

In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis.

The cerebroprotective action of CBD is CB₁ receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance.

In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke.”

https://www.ncbi.nlm.nih.gov/pubmed/27713349

Dendritic Cell Regulation by Cannabinoid-Based Drugs.

pharmaceuticals-logo

“Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered.

Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases.

Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function.

Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders.

At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC). Dendritic cells are recognized for their critical role in initiating and maintaining immune responses.

Therefore, DC are potential targets for cannabinoid-mediated modulation.

Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes.”

https://www.ncbi.nlm.nih.gov/pubmed/27713374

Cannabinoids and Dementia: A Review of Clinical and Preclinical Data.

 pharmaceuticals-logo

“The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia.

We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD) and vascular dementia (VD).

Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro.

However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce.

While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia.

Further research is needed, including in vivo models of dementia and human studies.”

https://www.ncbi.nlm.nih.gov/pubmed/27713372

The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism.

pharmaceuticals-logo

“Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects.

Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC) and the non-psychotropic cannabidiol (CBD) modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC).

The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO), suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system.

Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling.

We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.”

Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked with Amyotrophic Lateral Sclerosis.

Image result for J Cell Biochem.

“Research in recent years has extensively investigated the therapeutic efficacy of mesenchymal stromal cells in regenerative medicine for many neurodegenerative diseases at preclinical and clinical stages.

However, the success rate of stem cell therapy remains less at translational phase. Lack of relevant animal models that potentially simulate the molecular etiology of human pathological symptoms might be a reason behind such poor clinical outcomes associated with stem cell therapy.

Apparently, self-renewal and differentiation ability of mesenchymal stem cells may help to study the early developmental signaling pathways connected with the diseases, such as Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS), etc., at in vitro level.

Cannabidiol, a non-psychotrophic cannabinoid, has been demonstrated as a potent anti-inflammatory and neuroprotective agent in neurological preclinical models.

In the present study, we investigated the modulatory role of cannabidiol on genes associated with ALS using human gingiva-derived mesenchymal stromal cells (hGMSCs) as an in vitro model system.

Next generation transcriptomic sequencing analysis demonstrated considerable modifications in the expression of genes connected with ALS pathology, oxidative stress, mitochondrial dysfunction, and excitotoxicity in hGMSCs treated with cannabidiol.

Our results suggest the efficacy of cannabidiol to delineate the unknown molecular pathways, which may underlie ALS pathology at early stage using hGMSCs as a compelling in vitro system.”

https://www.ncbi.nlm.nih.gov/pubmed/27714895

Cannabinoid CB1 receptors in distinct circuits of the extended amygdala determine fear responsiveness to unpredictable threat.

Image result for Mol Psychiatry.

“The brain circuits underlying behavioral fear have been extensively studied over the last decades.

Here, we show that the endocannabinoid system acting in synaptic circuits of the extended amygdala can explain the fear response profile during exposure to unpredictable threat.

Using fear training with predictable or unpredictable cues in mice, combined with local and cell-type-specific deficiency and rescue of cannabinoid type 1 (CB1) receptors, we found that presynaptic CB1 receptors on distinct amygdala projections to bed nucleus of the stria terminalis (BNST) are both necessary and sufficient for the shift from phasic to sustained fear in response to an unpredictable threat.

These results thereby identify the causal role of a defined protein in a distinct brain pathway for the temporal development of a sustained state of anxious apprehension during unpredictability of environmental influences, reminiscent of anxiety symptoms in humans.”

https://www.ncbi.nlm.nih.gov/pubmed/27698427

Cannabisol, a novel Δ9-THC dimer possessing a unique methylene bridge, isolated from Cannabis sativa.

Image result for Tetrahedron Lett.

“Cannabisol (1), a unique dimer of Δ9-tetrahydrocannabinol (Δ9-THC) with a methylene bridge, was isolated from Cannabis sativa.

This is the first example of a C-bridged dimeric cannabinoid.

The structure of 1 was unambiguously deduced by HRESIMS, GCMS, and NMR spectroscopy.

A plausible biogenesis of 1 is described.”

Cannabidiol: a potential treatment for post Ebola Syndrome?

Image result for international journal of infectious diseases

“Patients recovered from Ebola virus infection may experience short- and long-term physical, neuropsychological and social sequelae, including arthralgia, musculoskeletal pain, ophthalmic inflammation, auditory problems, fatigue, confusion, insomnia, short-term memory impairment, anxiety, depression and anorexia, all lasting from 2 weeks to more than 2 years.

Currently there are no treatments for post Ebola sequelae.

We hypothesize that cannabidiol (CBD) may attenuate some of these post Ebola sequelae, several of which have been postulated to result from inflammation and/or an autoimmune response.

CBD has anti-inflammatory actions in various animal models.

Clinical studies have shown that oral administration of CBD, compared to placebo, significantly reduces anxiety, has antinociceptive and anticonvulsant actions, and may be therapeutic for insomnia.

Overall, CBD has a number of pharmacological effects that may significantly improve the mental and somatic health of patients suffering from post Ebola sequelae.

In humans, CBD, at therapeutic doses, does not: 1) elicit dependence or tolerance; 2) significantly alter heart rate or blood pressure; 3) affect gastrointestinal transit; 4) produce significant cognitive or psychomotor impairments. Mild sedation and nausea are the most commonly reported adverse effects associated with CBD.

CBD, based on its pharmacological effects and favorable safety profile, should be considered as a treatment for individuals with post Ebola sequelae.”

https://www.ncbi.nlm.nih.gov/pubmed/27686726

Neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets.

Image result for Pediatr Res.

“To test the neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol (CBD), piglets received i.v. CBD or vehicle after hypoxia-ischemia (HI: temporary occlusion of both carotid arteries plus hypoxia).

CBD administration was free from side effects; moreover, CBD administration was associated with cardiac, hemodynamic, and ventilatory beneficial effects.

In conclusion, administration of CBD after HI reduced short-term brain damage and was associated with extracerebral benefits.”

https://www.ncbi.nlm.nih.gov/pubmed/18679164