Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation.

 

 

“Cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC) have well documented immunomodulatory effects in vitro, but not following oral administration in humans. Here we show that oral co-administration of cannabinoids with lipids can substantially increase their intestinal lymphatic transport in rats. Moreover, immune cells from MS patients were more susceptible to the immunosuppressive effects of cannabinoids than those from healthy volunteers or cancer patients. Therefore, administering cannabinoids with a high-fat meal or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders.”  https://www.ncbi.nlm.nih.gov/pubmed/29109461

“Cannabis sativa has a very long history of medical use. In summary, it has been demonstrated in this work that oral co-administration of cannabis or cannabis-based medicines with lipids results in extremely high levels of lipophilic cannabinoids in the intestinal lymphatic system and prominent immunomodulatory effects. Therefore, administering cannabinoids with a high-fat meal, as cannabis-containing food, or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders.”  https://www.nature.com/articles/s41598-017-15026-z

Increased expression of type 1 cannabinoid (CB1) receptor among patients with rotator cuff lesions and shoulder stiffness.

:Journal of Shoulder and Elbow Surgery Home

“Shoulder stiffness is a disease manifested by pain, limited range of motion, and functional disability. The inflammatory and fibrosis processes play a substantial role in the pathogenesis of shoulder stiffness. The CB1 receptor has been recognized to mediate the processes of pathologic fibrosis.

This study investigated the role of the CB1 pathway in pathogenesis of rotator cuff lesions with shoulder stiffness.

The CB1 pathway is involved in the pathogenesis of shoulder stiffness. It may be a promising target for the treatment of rotator cuff lesions with shoulder stiffness.”

https://www.ncbi.nlm.nih.gov/pubmed/29108858

http://www.jshoulderelbow.org/article/S1058-2746(17)30589-X/fulltext

Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol.

Neurobiology of Aging

“This study was designed to test our hypothesis that an ultra-low dose of delta-9 tetrahydrocannabinol (THC) reverses age-dependent cognitive impairments in old mice and to examine the possible biological mechanisms that underlie this behavioral effect. These findings suggest that extremely low doses of THC that are devoid of any psychotropic effect and do not induce desensitization may provide a safe and effective treatment for cognitive decline in aging humans.”  https://www.ncbi.nlm.nih.gov/pubmed/29107185

“Cognitive decline is an integral aspect of aging. The idea that age-related cognitive decline can be reversed and that the old brain can be revitalized is not new. It has been previously suggested that the endocannabinoid system is part of an antiaging homeostatic defense system.  In previous studies, we have shown that ultra-low doses of tetrahydrocannabinol (THC, the main psychotropic ingredient in cannabis) protected young mice from cognitive impairments that were evoked by various insults. In the present study, we tested our hypothesis that a single ultra-low dose of THC can reverse age-dependent cognitive decline in mice. Here, we show that a single extremely low dose of THC devoid of any psychotropic activity can trigger an endogenous compensatory mechanism that improves cognitive functioning in old mice and that this effect lasts for at least several weeks. Since THC in high doses (dronabinol, 1–10 mg) is already approved for medical treatments in humans, and since its safety profile is well characterized, we believe that the initiation of clinical trials with ultra-low doses of THC designed to reverse cognitive decline in elderly patients should be straightforward.”  http://www.sciencedirect.com/science/article/pii/S0197458017303214

“Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol. These findings suggest that extremely low doses of THC that are devoid of any psychotropic effect and do not induce desensitization may provide a safe and effective treatment for cognitive decline in aging humans.”   http://www.neurobiologyofaging.org/article/S0197-4580(17)30321-4/fulltext

Neurobiology of Aging Home

Cannabinoid receptor 1/2 double-knockout mice develop epilepsy.

Epilepsia

“The endocannabinoid system has gained attention as an important modulator of activity in the central nervous system. Initial studies focused on cannabinoid receptor 1 (CB1), which is widely expressed in the brain, but recent work also implicates cannabinoidreceptor 2 (CB2) in modulating neuronal activity.

Both receptors are capable of reducing neuronal activity, generating interest in cannabinoid receptor agonists as potential anticonvulsants.

CB1 (Cnr1) and CB2 (Cnr2) single-knockout mice have been generated, with the former showing heightened seizure sensitivity, but not overt seizures. Given overlapping and complementary functions of CB1 and CB2 receptors, we queried whether double-knockout mice would show an exacerbated neurological phenotype.

Strikingly, 30% of double-knockout mice exhibited provoked behavioral seizures, and 80% were found to be epileptic following 24/7 video-electroencephalographic monitoring. Single-knockout animals did not exhibit seizures. These findings highlight the importance of the endocannabinoid system for maintaining network stability.”

https://www.ncbi.nlm.nih.gov/pubmed/29105060

http://onlinelibrary.wiley.com/doi/10.1111/epi.13930/abstract

Parameters of the Endocannabinoid System as Novel Biomarkers in Sepsis and Septic Shock.

metabolites-logo

“Sepsis represents a dysregulated immune response to infection, with a continuum of severity progressing to septic shock. This dysregulated response generally follows a pattern by which an initial hyperinflammatory phase is followed by a state of sepsis-associated immunosuppression.

Major challenges in improving sepsis care include developing strategies to ensure early and accurate identification and diagnosis of the disease process, improving our ability to predict outcomes and stratify patients, and the need for novel sepsis-specific treatments such as immunomodulation.

Biomarkers offer promise with all three of these challenges and are likely also to be the solution to determining a patient’s immune status; something that is critical in guiding effective and safe immunomodulatory therapy. Currently available biomarkers used in sepsis lack sensitivity and specificity, among other significant shortcomings.

The endocannabinoid system (ECS) is an emerging topic of research with evidence suggesting a ubiquitous presence on both central and peripheral tissues, including an intrinsic link with immune function. This review will first discuss the state of sepsis biomarkers and lack of available treatments, followed by an introduction to the ECS and a discussion of its potential to provide novel biomarkers and treatments.”

https://www.ncbi.nlm.nih.gov/pubmed/29104224

http://www.mdpi.com/2218-1989/7/4/55

Review: The Role of Cannabinoids on Esophageal Function-What We Know Thus Far.

Mary Ann Liebert, Inc. publishers

“The endocannabinoid system (ECS) primarily consists of cannabinoid receptors (CBRs), endogenous ligands, and enzymes for endocannabinoid biosynthesis and inactivation. Although the presence of CBRs, both CB1 and CB2, as well as a third receptor (G-protein receptor 55 [GPR55]), has been established in the gastrointestinal (GI) tract, few studies have focused on the role of cannabinoids on esophageal function. To date, studies have shown their effect on GI motility, inflammation and immunity, intestinal and gastric acid secretion, nociception and emesis pathways, and appetite control. Given the varying and sometimes limited efficacy of current medical therapies for diseases of the esophagus, further understanding and investigation into the interplay of the ECS on esophageal health and disease may present new therapeutic modalities that may help advance current treatment options. In this brief review, the current understanding of the ECS role in various esophageal functions and disorders is presented.”

https://www.ncbi.nlm.nih.gov/pubmed/29098187

http://online.liebertpub.com/doi/10.1089/can.2017.0031

Chronic Adolescent Δ9-Tetrahydrocannabinol Treatment of Male Mice Leads to Long-Term Cognitive and Behavioral Dysfunction, Which Are Prevented by Concurrent Cannabidiol Treatment.

Mary Ann Liebert, Inc. publishers

“The current study examined the immediate and long-term behavioral consequences of THC, CBD, and their combination in a mouse model of adolescent cannabis use.

All THC-induced behavioral abnormalities were prevented by the coadministration of CBD+THC,

These data suggest that chronic exposure to THC during adolescence leads to some of the behavioral abnormalities common in schizophrenia. Interestingly, CBD appeared to antagonize all THC-induced behavioral abnormalities.

These findings support the hypothesis that adolescent THC use can impart long-term behavioral deficits; however, cotreatment with CBD prevents these deficits.”

https://www.ncbi.nlm.nih.gov/pubmed/29098186

http://online.liebertpub.com/doi/10.1089/can.2017.0034

The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: clues for other neuroinflammatory diseases.

Cover image

“Multiple sclerosis is the most common inflammatory demyelinating disease of the central nervous system, caused by an autoimmune response against myelin that eventually leads to progressive neurodegeneration and disability. Although the knowledge on its underlying neurobiological mechanisms has considerably improved, there is a still unmet need for new treatment options, especially for the progressive forms of the disease.

Both preclinical and clinical data suggest that cannabinoids, derived from the Cannabis sativa plant, may be used to control symptoms such as spasticity and chronic pain, whereas only preclinical data indicate that these compounds and their endogenous counterparts, i.e. the endocannabinoids, may also exert neuroprotective effects and slow down disease progression.

Here, we review the preclinical and clinical studies that could explain the therapeutic action of cannabinoid-based medicines, as well as the medical potential of modulating endocannabinoid signaling in multiple sclerosis, with a link to other neuroinflammatory disorders that share common hallmarks and pathogenetic features.”

https://www.ncbi.nlm.nih.gov/pubmed/29097192

http://www.sciencedirect.com/science/article/pii/S0301008217300709

THC inhibits the expression of ethanol-induced locomotor sensitization in mice.

Cover image Alcohol

“The motivational circuit activated by ethanol leads to behavioral changes that recruit the endocannabinoid system (ECS). Case reports and observational studies suggest that the use of Cannabis sp. mitigates problematic ethanol consumption in humans.

Here, we verified the effects of the two main phytocannabinoid compounds of Cannabis sp., cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), in the expression of ethanol-induced locomotor sensitization in mice.

Our findings showing that phytocannabinoid treatment prevents the expression of behavioral sensitization in mice provide insight into the potential therapeutic use of phytocannabinoids in alcohol-related problems.”

https://www.ncbi.nlm.nih.gov/pubmed/29084627

http://www.sciencedirect.com/science/article/pii/S0741832916302877?via%3Dihub

N-Arachidonoyl Dopamine: A Novel Endocannabinoid and Endovanilloid with Widespread Physiological and Pharmacological Activities.

Mary Ann Liebert, Inc. publishers

“N-arachidonoyl dopamine (NADA) is a member of the family of endocannabinoids to which several other N-acyldopamines belong as well. Their activity is mediated through various targets that include cannabinoid receptors or transient receptor potential vanilloid (TRPV)1. Synthesis and degradation of NADA are not yet fully understood. Nonetheless, there is evidence that NADA plays an important role in nociception and inflammation in the central and peripheral nervous system. The TRPV1 receptor, for which NADA is a potent agonist, was shown to be an endogenous transducer of noxious heat. Moreover, it has been demonstrated that NADA exerts protective and antioxidative properties in microglial cell cultures, cortical neurons, and organotypical hippocampal slice cultures. NADA is present in very low concentrations in the brain and is seemingly not involved in activation of the classical pathways. We believe that treatment with exogenous NADA during and after injury might be beneficial. This review summarizes the recent findings on biochemical properties of NADA and other N-acyldopamines and their role in physiological and pathological processes. These findings provide strong evidence that NADA is an effective agent to manage neuroinflammatory diseases or pain and can be useful in designing novel therapeutic strategies.”

https://www.ncbi.nlm.nih.gov/pubmed/29082315

http://online.liebertpub.com/doi/10.1089/can.2017.0015