Cannabinoids as Modulators of Cell Death: Clinical Applications and Future Directions.

 Image result for Rev Physiol Biochem Pharmacol.

“Endocannabinoids are bioactive lipids that modulate various physiological processes through G-protein-coupled receptors (CB1 and CB2) and other putative targets. By sharing the activation of the same receptors, some phytocannabinoids and a multitude of synthetic cannabinoids mimic the effects of endocannabinoids.

In recent years, a growing interest has been dedicated to the study of cannabinoids properties for their analgesic, antioxidant, anti-inflammatory and neuroprotective effects. In addition to these well-recognized effects, various studies suggest that cannabinoids may affect cell survival, cell proliferation or cell death. These observations indicate that cannabinoids may play an important role in the regulation of cellular homeostasis and, thus, may contribute to tissue remodelling and cancer treatment.

For a long time, the study of cannabinoid receptor signalling has been focused on the classical adenylyl cyclase/cyclic AMP/protein kinase A (PKA) pathway. However, this pathway does not totally explain the wide array of biological responses to cannabinoids. In addition, the diversity of receptors and signalling pathways that endocannabinoids modulate offers an interesting opportunity for the development of specific molecules to disturb selectively the endogenous system.

Moreover, emerging evidences suggest that cannabinoids ability to limit cell proliferation and to induce tumour-selective cell death may offer a novel strategy in cancer treatment.

This review describes the main properties of cannabinoids in cell death and attempts to clarify the different pathways triggered by these compounds that may help to understand the complexity of respective molecular mechanisms and explore the potential clinical benefit of cannabinoids use in cancer therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/28425013

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Bladder cancer cell growth and motility implicate cannabinoid 2 receptor-mediated modifications of sphingolipids metabolism.

Image result for Scientific Reports

“The inhibitory effects demonstrated by activation of cannabinoid receptors (CB) on cancer proliferation and migration may also play critical roles in controlling bladder cancer (BC).

CB expression on human normal and BC specimens was tested by immunohistochemistry.

Human BC cells RT4 and RT112 were challenged with CB agonists and assessed for proliferation, apoptosis, and motility. Cellular sphingolipids (SL) constitution and metabolism were evaluated after metabolic labelling.

CB1-2 were detected in BC specimens, but only CB2 was more expressed in the tumour.

Both cell lines expressed similar CB2. Exposure to CB2 agonists inhibited BC growth, down-modulated Akt, induced caspase 3-activation and modified SL metabolism.

Baseline SL analysis in cell lines showed differences linked to unique migratory behaviours and cytoskeletal re-arrangements.

CB2 activation changed the SL composition of more aggressive RT112 cells by reducing (p < 0.01) Gb3 ganglioside (-50 ± 3%) and sphingosine 1-phosphate (S1P, -40 ± 4%), which ended up to reduction in cell motility (-46 ± 5%) with inhibition of p-SRC.

CB2-selective antagonists, gene silencing and an inhibitor of SL biosynthesis partially prevented CB2 agonist-induced effects on cell viability and motility.

CB2 activation led to ceramide-mediated BC cell apoptosis independently of SL constitutive composition, which instead was modulated by CB2 agonists to reduce cell motility.”

https://www.ncbi.nlm.nih.gov/pubmed/28191815

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Development of new inhibitors for N-acylethanolamine-hydrolyzing acid amidase as promising tool against bladder cancer.

Image result for Bioorganic & Medicinal Chemistry

“The endocannabinoid system is a signaling system involved in a wide range of biological effects.

Literature strongly suggests the endocannabinoid system role in the pathogenesis of cancer and that its pharmacological activation produces therapeutic benefits.

Last research promotes the endocannabinoid system modulation by inhibition of endocannabinoids hydrolytic enzymes instead of direct activation of endocannabinoid receptors to avoid detrimental effects on cognition and motor control.

Here we report the identification of N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitors able to reduce cell proliferation and migration and cause cell death on different bladder cancer cell lines.

These molecules were designed, synthesized and characterized and active compounds were selected by a fluorescence high-throughput screening method set-up on human recombinant NAAA that also allows to characterize the mechanism of inhibition.

Together our results suggest an important role for NAAA in cell migration and in inducing tumor cell death promoting this enzyme as pharmacological target against bladder cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/28062195

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Bladder cancer found to be 45% lower in Cannabis users – NCI

National Cancer Institute

“Cannabis has been shown to kill cancer cells in the laboratory” http://www.cancer.gov/about-cancer/treatment/cam/patient/cannabis-pdq

“A review of bladder cancer rates in Cannabis users and non-users was done in over 84,000 men who took part in the California Men’s Health Study. Over 16 years of follow-up and adjusting for age, race/ethnic group and body mass index (BMI), rates of bladder cancer were found to be 45% lower in Cannabis users than in men who did not report Cannabis use.” http://www.cancer.gov/about-cancer/treatment/cam/patient/cannabis-pdq#section/_3

“Association Between Cannabis Use and the Risk of Bladder Cancer: Results From the California Men’s Health Study.”  http://www.ncbi.nlm.nih.gov/pubmed/25623697

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

New therapeutic strategies for the treatment of male lower urinary tract symptoms.

“Male lower urinary tract symptoms (LUTS) are prevalent in the general population, especially in those of advanced age, and are characterized by notable diversity in etiology and presentation, and have been proven to cause various degrees of impairment on quality of life.

The prostate has traditionally been regarded as the core cause of male LUTS. As a result, medical treatment aims to provide symptomatic relief and effective management of progression of male LUTS due to benign prostatic enlargement.

Anti-inflammatory agents, vitamin D3-receptor analogs, and cannabinoids represent treatment modalities currently under investigation for use in LUTS patients.

Furthermore, luteinizing hormone-releasing hormone antagonists, transient receptor-potential channel blockers, purinergic neurotransmission antagonists, Rho-kinase inhibitors, and inhibitors of endothelin-converting enzymes could have therapeutic potential in LUTS management, but still remain in the experimental setting.

This article reviews new strategies for the medical treatment of male LUTS, which are dictated by the potential role of the bladder and the risk of benign prostatic hyperplasia progression. Moreover, combination treatments and therapies currently under investigation are also presented.”

http://www.ncbi.nlm.nih.gov/pubmed/27218069

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid pharmacology in cancer research: A new hope for cancer patients?

Image result for Eur J Pharmacol.

“Cannabinoids have been used for many centuries to ease pain and in the past decade, the endocannabinoid system has been implicated in a number of pathophysiological conditions, such as mood and anxiety disorders, movement disorders such as Parkinson’s and Huntington’s disease, neuropathic pain, multiple sclerosis, spinal cord injury, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity, and osteoporosis.

Several studies have demonstrated that cannabinoids also have anti-cancer activity and as cannabinoids are usually well tolerated and do not produce the typical toxic effects of conventional chemotherapies, there is considerable merit in the development of cannabinoids as potential anticancer therapies.

Whilst the presence of psychoactive effects of cannabinoids could prevent any progress in this field, recent studies have shown the value of the non-psychoactive components of cannabinoids in activating apoptotic pathways, inducing anti-proliferative and anti-angiogenic effects.

The aforementioned effects are suggested to be through pathways such as ERK, Akt, mitogen-activated protein kinase (MAPK) pathways, phosphoinositide 3-kinase (PI3K) pathways and hypoxia inducible factor 1 (HIF1), all of which are important contributors to the hallmarks of cancer.

Many important questions still remain unanswered or are poorly addressed thus necessitating further research at basic pre-clinical and clinical levels. In this review, we address these issues with a view to identifying the key challenges that future research needs to address.”

http://www.ncbi.nlm.nih.gov/pubmed/26852955

http://www.thctotalhealthcare.com/category/cancer/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Ligands for cannabinoid receptors, promising anticancer agents.

Image result for Life Sci.

“Cannabinoid compounds are unique to cannabis and provide some interesting biological properties.

These compounds along with endocannabinoids, a group of neuromodulator compounds in the body especially in brain, express their effects by activation of G-protein-coupled cannabinoid receptors, CB1 and CB2.

There are several physiological properties attributed to the endocannabinoids including pain relief, enhancement of appetite, blood pressure lowering during shock, embryonic development, and blocking of working memory.

On the other hand, activation of endocannabinoid system may be suppresses evolution and progression of several types of cancer.

According to the results of recent studies, CB receptors are over-expressed in cancer cell lines and application of multiple cannabinoid or cannabis-derived compounds reduce tumor size through decrease of cell proliferation or induction of cell cycle arrest and apoptosis along with desirable effect on decrease of tumor-evoked pain.

Therefore, modulation of endocannabinoid system by inhibition of fatty acid amide hydrolase (FAAH), the enzyme, which metabolized endocannabinoids, or application of multiple cannabinoid or cannabis-derived compounds, may be appropriate for the treatment of several cancer subtypes. This review focuses on how cannabinoid affect different types of cancers.”

http://www.ncbi.nlm.nih.gov/pubmed/26764235

http://www.thctotalhealthcare.com/category/cancer/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoids and the Digestive Tract and Bladder in Health and Disease.

“Components of the so-called endocannabinoid system, i.e., cannabinoid receptors, endocannabinoids, as well as enzymes involved in endocannabinoid synthesis and degradation, have been identified both in the gastrointestinal and in the urinary tract.

Evidence suggests that the endocannabinoid system is implicated in many gastrointestinal and urinary physiological and pathophysiological processes, including epithelial cell growth, inflammation, analgesia, and motor function.

A pharmacological modulation of the endocannabinoid system might be beneficial for widespread diseases such as gastrointestinal reflux disease, irritable bowel syndrome, inflammatory bowel disease, colon cancer, cystitis, and hyperactive bladder.

Drugs that inhibit endocannabinoid degradation and raise the level of endocannabinoids, non-psychotropic cannabinoids (notably cannabidiol), and palmitoylethanolamide, an acylethanolamide co-released with the endocannabinoid anandamide, are promising candidates for gastrointestinal and urinary diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26408170

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The use of cannabinoids as anticancer agents.

Cover image

“It is well-established that cannabinoids exert palliative effects on some cancer-associated symptoms. In addition evidences obtained during the last fifteen years support that these compounds can reduce tumour growth in animal models of cancer.

Cannabinoids have been shown to activate an ER-stress related pathway that leads to the stimulation of autophagy-mediated cancer cell death.

In addition, cannabinoids inhibit tumour angiogenesis and decrease cancer cell migration.

The mechanisms of resistance to cannabinoid anticancer action as well as the possible strategies to develop cannabinoid-based combinational therapies to fight cancer have also started to be explored.

In this review we will summarize these observations (that have already helped to set the bases for the development of the first clinical studies to investigate the potential clinical benefit of using cannabinoids in anticancer therapies) and will discuss the possible future avenues of research in this area.” http://www.ncbi.nlm.nih.gov/pubmed/26071989

“… cannabinoids have been shown to alleviate nausea and vomit induced by chemotherapy and several cannabinoid-based medicines [Marinol (THC) and Cesamet (nabilone, a synthetic analogue of THC)] are approved for this purpose. Cannabinoids also inhibit pain, and Sativex (a standardized cannabis extract) has been approved in Canada for the treatment of cancer-associated pain. Other potential palliative effects of cannabinoids in oncology include appetite stimulation and attenuation of wasting. In addition to these palliative actions of cannabinoids in cancer patients, THC and other cannabinoids exhibit antitumour effects in animal models of cancer… a large body of scientific evidences strongly support THC and other cannabinoid agonists exert anticancer actions in preclinical models of cancer… In conclusion there exist solid scientific evidences supporting that cannabinoids exhibit a remarkable anticancer activity in preclinical models of cancer. Since these agents also show an acceptable safety profile, clinical studies aimed at testing them as single agents or in combinational therapies are urgently needed.” http://www.sciencedirect.com/science/article/pii/S0278584615001190
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous