The Consumption of Cannabis by Fibromyalgia Patients in Israel.

Image result for hindawi

“OBJECTIVE:

To report on the habits of cannabis consumption among fibromyalgia patients in Israel.

RESULTS:

Of 2,705 people, 383 (14%) responded to the questionnaire, with a mean age of 42.2±14.2 years. Of the responders, 84% reported consuming cannabis, and 44% were licensed for MC. The mean amount per month of cannabis consumed was 31.4±16.3g, and 80% of cannabis consumers (CC) smoked pure cannabis or cannabis mixed with tobacco. Pain relief was reported by 94% of CC, while 93% reported improved sleep quality, 87% reported improvement in depression, and 62% reported improvement in anxiety. Of MC-licensed CC, 55% bought cannabis beyond the medical allowance on the black market. Adverse effects were reported by 12% of CC. Only 8% reported dependence on cannabis. Most CC (64%) worked either full- or part-time jobs, and 74% reported driving “as usual” under cannabis use.

CONCLUSIONS:

Cannabis consumption among fibromyalgia patients in our country is very common and is mostly not licensed. Nearly all CC reported favorable effects on pain and sleep, and few reported adverse effects or feeling of dependence on cannabis.”

“The results of our study should encourage both the Rheumatology Association in our country and the MCA to reconsider their stand on cannabis and include fibromyalgia among the indications for MC under certain restrictions.”

A Brief Background on Cannabis: From Plant to Medical Indications.

 Ingenta Connect

“Cannabis has been used as a medicinal plant for thousands of years.

As a result of centuries of breeding and selection, there are now over 700 varieties of cannabis that contain hundreds of compounds, including cannabinoids and terpenes.

Cannabinoids are fatty compounds that are the main biological active constituents of cannabis. Terpenes are volatile compounds that occur in many plants and have distinct odors.

Cannabinoids exert their effect on the body by binding to receptors, specifically cannabinoid receptors types 1 and 2. These receptors, together with endogenous cannabinoids and the systems for synthesis, transport, and degradation, are called the Endocannabinoid System.

The two most prevalent and commonly known cannabinoids in the cannabis plant are delta-9-tetrahydrocannabinol (THC) and cannabidiol.

The speed, strength, and type of effects of cannabis vary based on the route of administration. THC is rapidly distributed through the body to fatty tissues like the brain and is metabolized by the cytochrome P450 system to 11-hydroxy-THC, which is also psychoactive.

Cannabis and cannabinoids have been indicated for several medical conditions.

There is evidence of efficacy in the symptomatic treatment of nausea and vomiting, pain, insomnia, post-traumatic stress disorder, anxiety, loss of appetite, Tourette’s syndrome, and epilepsy. Cannabis has also been associated with treatment for glaucoma, Huntington’s Disease, Parkinson’s Disease, and dystonia, but there is not good evidence to support its efficacy. Side effects of cannabis include psychosis and anxiety, which can be severe.

Here, we provided a summary of the history of cannabis, its pharmacology, and its medical uses.”

https://www.ncbi.nlm.nih.gov/pubmed/30139415

Cannabinoids in dermatology: a scoping review.

Image result for dermatol online journal

“The therapeutic applications of cannabis and cannabinoids are an increasingly conspicuous topic as de-criminalization and legalization of these products continues to expand.

A limited number of cannabinoid compounds have been approved for a specific set of conditions. However, the current role of cannabinoids for the treatment of dermatologic conditions remains to be defined.

We conducted a review of the current literature to determine the applications of cannabinoids for the therapy of various skin diseases.

After conducting our analysis, we found that cannabinoid products have the potential to treat a variety of skin conditions, including acne vulgaris, allergic contact dermatitis, asteatotic dermatitis, atopic dermatitis, hidradenitis suppurativa, Kaposi sarcoma, pruritus, psoriasis, skin cancer, and the cutaneous manifestations of systemic sclerosis. However, the majority of available data on these compounds are pre-clinical and there is a corresponding lack of high-quality randomized, controlled trials that evaluate their effects.

Cannabinoids have shown some initial promise as therapy for a variety of skin diseases. However, there is a requirement for thorough pre-clinical research and large-scale, randomized, controlled trials before cannabinoids can be considered safe and effective treatments for these conditions.”

“The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders”  https://www.sciencedirect.com/science/article/abs/pii/S0006295218303484

The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders.

Biochemical Pharmacology

“The skin is the largest organ of the body and has a complex and very active structure that contributes to homeostasis and provides the first line defense against injury and infection.

In the past few years it has become evident that the endocannabinoid system (ECS) plays a relevant role in healthy and diseased skin.

Specifically, we review how the dysregulation of ECS has been associated to dermatological disorders such as atopic dermatitis, psoriasis, scleroderma and skin cancer. Therefore, the druggability of the ECS could open new research avenues for the treatment of the pathologies mentioned.

Numerous studies have reported that phytocannabinoids and their biological analogues modulate a complex network pharmacology involved in the modulation of ECS, focusing on classical cannabinoid receptors, transient receptor potential channels (TRPs), and peroxisome proliferator-activated receptors (PPARs).

The combined targeting of several end-points seems critical to provide better chances of therapeutically success, in sharp contrast to the one-disease-one-target dogma that permeates current drug discovery campaigns.”

https://www.ncbi.nlm.nih.gov/pubmed/30138623

https://www.sciencedirect.com/science/article/abs/pii/S0006295218303484

Cannabinoids and reduced risk of hepatic steatosis in HIV-HCV co-infection: paving the way for future clinical research

Publication Cover

“Whether or not cannabis itself or cannabinoids contained in it may help to reduce hepatic steatosis in HIV-HCV coinfected patients remains an open question. The existing body of knowledge on the interactions between cannabis and the liver suggest a protective effect of cannabinoids on insulin resistance, diabetes, and NAFLD in the general population. Clinical research with randomized study designs is needed to evaluate the efficacy and safety of cannabis-based pharmacotherapies in HIV-HCV coinfected patients. Targeting the endocannabinoid system seems essential to differently manage several pathological conditions such as intestinal inflammation, obesity, diabetes and fatty liver disease. However, to date, few drugs have been tested in clinical trials. CB1-antagonists and CB2 agonists appear to be viable therapeutic options that need to be explored for the management of liver diseases. As HCV cure rates are coming close to 100% in the era of direct-acting antivirals, it is especially important to be able to identify modifiable risk factors of complications and death in HIV-HCV coinfected patients, as well as possible levers for intervention. Given the persistence of metabolic risk factors after HCV eradication, cannabis-based therapies need to be evaluated both as preventive and therapeutic tools in patients living with or at risk of liver steatosis, possibly in combination with existing conventional approaches.”

https://www.tandfonline.com/doi/full/10.1080/14787210.2018.1473764

Optimization Of A Preclinical Therapy Of Cannabinoids In Combination With Temozolomide Against Glioma.

 Biochemical Pharmacology “Glioblastoma multiforme (GBM) is the most frequent and aggressive form of brain cancer. These features are explained at least in part by the high resistance exhibited by these tumors to current anticancer therapies. Thus, the development of novel therapeutic approaches is urgently needed to improve the survival of the patients suffering this devastating disease.

Δ9-Tetrahydrocannabinol (THC, the major active ingredient of marijuana), and other cannabinoids have been shown to exert antitumoral actions in animal models of cancer, including glioma. The mechanism of these anticancer actions relies, at least in part, on the ability of these compounds to stimulate autophagy-mediated apoptosis in tumor cells.

Previous observations from our group demonstrated that local administration of THC (or of THC + CBD at a 1:1 ratio, a mixture that resembles the composition of the cannabinoid-based medicine Sativex®) in combination with Temozolomide, the benchmark agent for the treatment of GBM, synergistically reduces the growth of glioma xenografts.

With the aim of optimizing the possible clinical utilization of cannabinoids in anti-GBM therapies, in this work we explored the anticancer efficacy of the systemic administration of cannabinoids in combination with TMZ in preclinical models of glioma.

Our results show that oral administration of THC+CBD (Sativex-like extracts) in combination with TMZ produces a strong antitumoral effect in both subcutaneous and intracranial glioma cell-derived tumor xenografts. In contrast, combined administration of Sativex-like and BCNU (another alkylating agent used for the treatment of GBM which share structural similarities with the TMZ) did not show a stronger effect than individual treatments.

Altogether, our findings support the notion that the combined administration of TMZ and oral cannabinoids could be therapeutically exploited for the management of GBM.”

https://www.ncbi.nlm.nih.gov/pubmed/30125556

https://www.sciencedirect.com/science/article/abs/pii/S0006295218303496

Cannabidiol Attenuates Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Through Induction of Myeloid-Derived Suppressor Cells.

Image result for frontiers in immunology

“Multiple sclerosis (MS) is a chronic debilitating autoimmune disease without a cure. While the use of marijuana cannabinoids for MS has recently been approved in some countries, the precise mechanism of action leading to attenuate neuroinflammation is not clear. We used experimental autoimmune encephalomyelitis (EAE), a murine model of MS, to explore the anti-inflammatory properties of cannabidiol (CBD), a non-psychoactive cannabinoid. Treatment with CBD caused attenuation of EAE disease paradigms as indicated by a significant reduction in clinical scores of paralysis, decreased T cell infiltration in the central nervous system, and reduced levels of IL-17 and IFNγ. Interestingly, CBD treatment led to a profound increase in myeloid-derived suppressor cells (MDSCs) in EAE mice when compared to the vehicle-treated EAE controls. These MDSCs caused robust inhibition of MOG-induced proliferation of T cells in vitro. Moreover, adoptive transfer of CBD-induced MDSCs ameliorated EAE while MDSC depletion reversed the beneficial effects of CBD treatment, thereby conclusively demonstrating that MDSCs played a crucial role in CBD-mediated attenuation of EAE. Together, these studies demonstrate for the first time that CBD treatment may ameliorate EAE through induction of immunosuppressive MDSCs.”

https://www.ncbi.nlm.nih.gov/pubmed/30123217

“In conclusion, we have demonstrated that the mitigation of EAE with CBD comes from its ability to target a range of anti-inflammatory pathways, including (i) induction of anti-inflammatory MDSCs and (ii) decrease in pro-inflammatory and induction of anti-inflammatory cytokines. Because CBD is non-psychoactive, our studies suggest that CBD may constitute an excellent candidate for the treatment of MS and other autoimmune diseases. Our studies provide further evidence of the importance of MDSCs and that manipulation of such cells may constitute novel therapeutic modality to treat MS and other autoimmune diseases.”

https://www.frontiersin.org/articles/10.3389/fimmu.2018.01782/full

Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system.

 Biochemical Pharmacology “The endocannabinoid system (ECS) exerts a modulatory effect of important functions such as neurotransmission, glial activation, oxidative stress, or protein homeostasis.

Dysregulation of these cellular processes is a common neuropathological hallmark in aging and in neurodegenerative diseases of the central nervous system (CNS). The broad spectrum of actions of cannabinoids allows targeting different aspects of these multifactorial diseases.

In this review, we examine the therapeutic potential of the ECS for the treatment of chronic neurodegenerative diseases of the CNS focusing on Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis.

First, we describe the localization of the molecular components of the ECS and how they are altered under neurodegenerative conditions, either contributing to or protecting cells from degeneration.

Second, we address recent advances in the modulation of the ECS using experimental models through different strategies including the direct targeting of cannabinoid receptors with agonists or antagonists, increasing the endocannabinoid tone by the inhibition of endocannabinoid hydrolysis, and activation of cannabinoid receptor-independent effects.

Preclinical evidence indicates that cannabinoid pharmacology is complex but supports the therapeutic potential of targeting the ECS.

Third, we review the clinical evidence and discuss the future perspectives on how to bridge human and animal studies to develop cannabinoid-based therapies for each neurodegenerative disorder.

Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to each disease and the multiple unexplored pathways in cannabinoid pharmacology that could be useful for the treatment of neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/30121249

https://www.sciencedirect.com/science/article/abs/pii/S000629521830337X

The novel peripherally active cannabinoid type 1 and serotonin type 3 receptor agonist AM9405 inhibits gastrointestinal motility and reduces abdominal pain in mouse models mimicking irritable bowel syndrome.

European Journal of Pharmacology

“The endocannabinoid system (ECS) plays a crucial role in numerous physiological processes in the central and peripheral nervous systems. In the gastrointestinal (GI) tract, selective cannabinoid (CB) receptor agonists exert potent inhibitory actions on motility and pain signalling. In the present study, we used mouse models of diarrhea, hypermotility, and abdominal pain to examine whether a novel synthetic CB1 receptor agonist AM9405 [(2-(2,6-dihydroxy-4-(2-methyloctan-2-yl)phenyl)-1,3-dimethyl-1H-benzo[d]imidazol-3-ium bromide); also known as GAT379] exhibits effects of potential therapeutic relevance. AM9405 significantly slowed mouse intestinal motility in physiological conditions. Moreover, AM9405 reversed hypermotility and reduced pain in mouse models mimicking symptoms of functional GI disorders, such as stress-induced diarrhoea and writhing test. Interestingly, some of the effects of AM9405 were blocked by a 5-HT3 antagonist suggesting interaction with 5-HT3 receptors. In our study we show that combining CB1 agonism with 5-HT3 agonism may alter physiological functions and experimental pathophysiologies in a manner that make such compounds promising drugs for the future treatment of functional GI disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/30121173

https://www.sciencedirect.com/science/article/pii/S0014299918304734?via%3Dihub

Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus.

Journal of Integrative Medicine

“This study examined the antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava against methicillin-resistant Staphylococcus aureus (MRSA) and used a standardized purification protocol to determine the presence and abundance of bioactive compounds in the leaf extracts.

RESULTS:

Resistance to methicillin, penicillin, oxacillin and cefoxitin was observed in each of the clinical and nonclinical MRSA isolates. However, they were still vulnerable to vancomycin. Used individually, the 50% extract of each plant leaf inhibited MRSA growth. A profound synergism was observed when C. sativa was used in combination with T. orientalis (1:1) and when P. guajava was used in combination with T. orientalis (1:1). This was shown by larger zones of inhibition. This synergism was probably due to the combined inhibitory effect of phenolics present in the leaf extracts (i.e., quercetin and gallic acid) and catechin, as detected by HPTLC.

CONCLUSION:

The leaf extracts of C. sativa, T. orientalis and P. guajava had potential for the control of both hospital- and community-acquired MRSA. Moreover, the inhibitory effect was enhanced when extracts were used in combination.”

https://www.ncbi.nlm.nih.gov/pubmed/30120078

https://www.sciencedirect.com/science/article/pii/S2095496418300815?via%3Dihub