The Role of Cannabinoids in the Treatment of Cancer in Pediatric Patients.

“Cannabis has been used in folk medicine to alleviate pain, depression, amenorrhea, inflammation and numerous other medical conditions. In cancer patients specifically, cannabinoids are well known to exert palliative effects; their best-established use is the inhibition of chemotherapy-induced nausea and vomiting, but they are applied also to alleviate pain, stimulate appetite, and attenuate wasting. More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death.

Anti-cancer efficacy of cannabinoids:

The ability of cannabinoids to reduce tumor growth was reported for the first time by Munson et al. in 1975. They showed by in vitro and in vivo experiments that several phytocannabinoids, including THC, decreased Lewis lung adenocarcinoma proliferation in a dose-dependent manner. Nevertheless, it was not until the 2000s that the interest in these compounds as anti-cancer agents was renewed, predominantly due to the work of Guzman in gliomas, and the demonstration of cannabinoids’ anti-cancer effects on various types of tumors. The anti-tumorigenic effect of the endo- and phytocannabinoids was demonstrated in several in vitro and in vivo models of a wide variety of adult tumors including glioma, prostate, breast, leukemia, lymphoma, pancreas, melanoma, thyroid, colorectal and hepatocellular carcinoma tumors.

Given our positive results, we suggest that non-THC cannabinoids such as CBD might provide a basis for the development of novel therapeutic strategies without the typical psychotropic effects of THC that limit its use in pediatric patients.

Overall, the cannabinoids, and specifically the non-psychoactive CBD, may show future promise in the treatment of cancer”

https://www.ima.org.il/FilesUpload/IMAJ/0/228/114216.pdf

https://www.ima.org.il/imaj/ViewArticle.aspx?aId=4044

https://www.ncbi.nlm.nih.gov/pubmed/28457057

Cannabis in Inflammatory Bowel Diseases: from Anecdotal Use to Medicalization?

“Inflammatory bowel diseases (IBD) are disorders of chronic intestinal inflammation of unknown etiology. The basic pathophysiological process is that of immune mediated inflammation affecting the intestinal tract. This process is dependent on and governed by both genetic and environmental factors. There are two distinct forms of IBD – ulcerative colitis and Crohn’s disease.

There is no curative medical treatment. Furthermore, over 30% of patients, and over 70% with Crohn’s disease, will need surgical intervention for their disease. Thus, it comes as no surprise that many patients will turn to complementary or alternative medicine at some stage of their disease. Recent information reveals that between 16% and 50% of patients admit to having tried marijuana for their symptoms.

There is a long list of gastrointestinal symptoms that have been reported to be relieved by cannabis. These include anorexia, nausea, abdominal pain, diarrhea, gastroparesis – all of which can be part of IBD. These effects are related to the fact that the gastrointestinal tract is rich in cannabinoid (CB) receptors and their endogenous ligands, comprising together the endocannabinoid system (ECS).

In conclusion, use of cannabis is common in IBD, and it seems to be mostly safe. Accumulating preliminary data from human studies support a beneficial role of cannabinoids in IBD.”

https://www.ima.org.il/FilesUpload/IMAJ/0/228/114217.pdf

https://www.ima.org.il/imaj/ViewArticle.aspx?aId=4045

https://www.ncbi.nlm.nih.gov/pubmed/28457058

Cannabis Use, Medication Management and Adherence Among Persons Living with HIV.

Image result for AIDS Behav.

“Cannabis is used to relieve nausea, trigger weight gain, and reduce pain among adults living with HIV; however, the relationship between its use and medication adherence and management is unclear. Participants (N = 107) were from an ongoing cohort study of community-dwelling HIV+ adults, stratified by cannabis (CB) use: HIV+/CB+ (n = 41) and HIV+/CB- (n = 66). CB+ participants either tested positive in a urine toxicology screen for THC or had a self-reported history of regular and recent use. HIV-status was provided by physician results and/or biomarker assessment. Adherence was measured via the Morisky scale and medication management was assessed via the Medication Management Test-Revised. After adjusting for gender, we found no association between cannabis use group and adherence nor medication management. The amount of cannabis used was also not associated with measures of adherence and management. Preliminary findings suggest that cannabis use may not adversely influence medication adherence/management among adults living with HIV.”

Cannabis Use in Palliative Oncology: A Review of the Evidence for Popular Indications.

Image result for Isr Med Assoc J.

“A flowering plant of variegated ingredients and psychoactive qualities, cannabis has long been used for medicinal and recreational purposes. Currently, cannabis is approved in several countries for indications of symptomatic alleviation. However, limited knowledge on the benefits and risks precludes inclusion of cannabis in standard treatment guidelines. This review provides a summary of the available literature on the use of cannabis and cannabinoid-based medicines in palliative oncology. Favorable outcomes are demonstrated for chemotherapy-induced nausea and vomiting and cancer-related pain, with evidence of advantageous neurological interactions. Benefit in the treatment of anorexia, insomnia and anxiety is also suggested. Short- and long-term side effects appear to be manageable and to subside after discontinuation of the drug. Finally, cannabinoids have shown anti-neoplastic effects in preclinical studies in a wide range of cancer cells and some animal models. Further research is needed before cannabis can become a part of evidence-based oncology practice.”

https://www.ncbi.nlm.nih.gov/pubmed/28457056

Marijuana compounds show promise in treatment of cardiac disease

Marijuana compounds show promise in treatment of cardiac disease

“A Nevada company is hoping to develop new medicines for heart failure using compounds in marijuana and a novel therapy identified by a University of Hawaiʻi at Mānoa researcher. Dr. Alexander Stokes, assistant research professor in the Department of Cell and Molecular Biology at the UH John A. Burns School of Medicine, obtained a U.S. patent for his novel therapy in 2015. The patent claims the cannabinoid receptor TRPV1 can be regulated therapeutically by plant-based cannabinoids.”  https://medicalxpress.com/news/2017-01-marijuana-compounds-treatment-cardiac-disease.html

“Marijuana compounds show promise in treatment of cardiac disease”  http://manoa.hawaii.edu/news/article.php?aId=8355

“Marijuana compounds show promise in treatment of cardiac disease”  http://www.hawaii.edu/news/2017/01/12/marijuana-compounds-show-promise-in-treatment-of-cardiac-disease/

 

Significant Tic Reduction in An Otherwise Treatment-Resistant Patient with Gilles de la Tourette Syndrome Following Treatment with Nabiximols.

brainsci-logo

“Early anecdotal reports and preliminary studies suggested that cannabinoid-based medicines such as delta-9-tetrahydrocannabinol (THC) are effective in the treatment of Gilles de la Tourette syndrome (TS).

We report a single case study of a patient with otherwise treatment-resistant TS successfully treated with nabiximols.

Our results provide further evidence that treatment with nabiximols may be effective in the treatment of patients with TS.

Given the positive response exhibited by the patient highlighted in this report, further investigation of the effects of nabiximols is proposed on a larger group of patients in a clinical trial setting.”

Cannabis use is associated with reduced prevalence of non-alcoholic fatty liver disease: A cross-sectional study.

Image result for plos one

“Cannabis use is associated with reduced prevalence of obesity and diabetes mellitus (DM) in humans and mouse disease models. Obesity and DM are a well-established independent risk factor for non-alcoholic fatty liver disease (NAFLD), the most prevalent liver disease globally. The effects of cannabis use on NAFLD prevalence in humans remains ill-defined. Our objective is to determine the relationship between cannabis use and the prevalence of NAFLD in humans.

We conducted a population-based case-control study of 5,950,391 patients using the 2014 Healthcare Cost and Utilization Project (HCUP), Nationwide Inpatient Survey (NIS) discharge records of patients 18 years and older. After identifying patients with NAFLD (1% of all patients), we next identified three exposure groups: non-cannabis users (98.04%), non-dependent cannabis users (1.74%), and dependent cannabis users (0.22%). We adjusted for potential demographics and patient related confounders and used multivariate logistic regression (SAS 9.4) to determine the odds of developing NAFLD with respects to cannabis use.

Our findings revealed that cannabis users (dependent and non-dependent) showed significantly lower NAFLD prevalence compared to non-users (AOR: 0.82[0.76-0.88]; p<0.0001). The prevalence of NAFLD was 15% lower in non-dependent users (AOR: 0.85[0.79-0.92]; p<0.0001) and 52% lower in dependent users (AOR: 0.49[0.36-0.65]; p<0.0001). Among cannabis users, dependent patients had 43% significantly lower prevalence of NAFLD compared to non-dependent patients (AOR: 0.57[0.42-0.77]; p<0.0001).

Our observations suggest that cannabis use is associated with lower prevalence of NAFLD in patients. These novel findings suggest additional molecular mechanistic studies to explore the potential role of cannabis use in NAFLD development.”  https://www.ncbi.nlm.nih.gov/pubmed/28441459

Endocannabinoid system acts as a regulator of immune homeostasis in the gut

PNAS, Proceedings of the National Academy of Sciences

“Exogenous cannabinoids such as marijuana exert their influence through cannabinoid receptors. Endogenous cannabinoids such as anandamide (AEA) function through the same receptors, and their physiological roles are a subject of intense study. Here, we show that AEA plays a pivotal role in maintaining immunological health in the gut. The immune system in the gut actively tolerates the foreign antigens present in the gut through mechanisms that are only partially understood. We show that AEA contributes to this critical process by promoting the presence of CX3CR1hi macrophages, which are immunosuppressive. These results uncover a major conversation between the immune and nervous systems. In addition, with the increasing prevalence of ingestion of exogenous marijuana, our study has significant implications for public health.”  http://www.pnas.org/content/early/2017/04/18/1612177114.full

“Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.”  https://www.ncbi.nlm.nih.gov/pubmed/28439004

“Active ingredients in both hot peppers and cannabis calm the gut’s immune system” https://medicalxpress.com/news/2017-04-ingredients-hot-peppers-cannabis-calm.html

 

Anti-inflammatory effects of the cannabidiol derivative dimethylheptyl-cannabidiol – studies in BV-2 microglia and encephalitogenic T cells

“Preparations derived from Cannabis sativa (marijuana and hashish) have become widespread since ancient times, both as therapeutic agents and in recreational smoking.

Among the more than 60 phytocannabinoids identified in Cannabis extracts, the two most abundant are Δ9-tetrahydrocannabinol (THC), the major psychotropic constituent, and cannabidiol (CBD), the major non-psychoactive component.

Cannabinoids were shown to exert a wide range of therapeutic effects, and many of the cannabinoids, especially CBD, were shown to possess potent anti-inflammatory and immunomodulatory activities. In addition, it was shown that several cannabinoids have pro-apoptotic, neuroprotective, and antitumor properties

Dimethylheptyl-cannabidiol (DMH-CBD), a non-psychoactive, synthetic derivative of the phytocannabinoid cannabidiol (CBD), has been reported to be anti-inflammatory in RAW macrophages. Here, we evaluated the effects of DMH-CBD at the transcriptional level in BV-2 microglial cells as well as on the proliferation of encephalitogenic T cells.

The results show that DMH-CBD has similar anti-inflammatory properties to those of CBD. DMH-CBD downregulates the expression of inflammatory cytokines and protects the microglial cells by inducing an adaptive cellular response against inflammatory stimuli and oxidative injury. In addition, DMH-CBD decreases the proliferation of pathogenic activated TMOG cells.

Several CBD derivatives were also shown to have anti-inflammatory and anti-proliferative properties.

The results show that DMH-CBD induces similar anti-inflammatory, anti-proliferative, and stress response effects to those previously observed for CBD.”

https://www.degruyter.com/view/j/jbcpp.2016.27.issue-3/jbcpp-2015-0071/jbcpp-2015-0071.xml

Editorial: The CB2 Cannabinoid System: A New Strategy in Neurodegenerative Disorder and Neuroinflammation

Image result for frontiers in neuroscience

“The cannabinoid receptors subtype 2 (CB2R) are emerging as novel targets for the development of new therapeutic approaches and PET probes useful to early diagnose neuroinflammation as first step in several neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson disease (PD).

This Research Topic is mainly focused on the involvment of CB2R in neurodegenerative disorders and on the usefulness of CB2R ligands in the therapy and early diagnosis of neuroinflammation as onset of neurodegeneration.

In the reviews of Aso and Ferrer and Cassano et al. an interesting and exaustive overview of the endogenous cannabinoid signaling and its role in neuroinflammation and neurogenesis is reported. The potential of CB2R as therapeutic target in AD is argued by several evidences derived by robust experimental models and the effects modulated by CB2R agonists on different pathways involved in the pathogenesis of AD are discussed; indeed, these ligands are able to reduce inflammation, Aβ production and deposition, tau protein hyper-phosphorylation and oxidative stress damage caused by Aβ peptides. CB2R agonists are also able to induce Aβ clearance leading to cognitive improvement in AD models.

In conclusion, considering that neuroinflammation has been widely reported as indicator and modulator of neurodegeneration, the reduction of the neuroinflammatory responses could be considered as a new therapeutic strategy in these diseases. Moreover, the selective CB2R overexpression on the activated-microglial cells provides also a highly specialized target useful to an early diagnosis of the neurodegenerative diseases.”

http://journal.frontiersin.org/article/10.3389/fnins.2017.00196/full