Concise review of the management of iatrogenic emesis using cannabinoids: emphasis on nabilone for chemotherapy-induced nausea and vomiting.

Image result for Cancer Chemother Pharmacol.

“Chemotherapy-induced nausea and vomiting (CINV) is a prevalent, distressing, and burdensome side effect of cancer chemotherapy. It is estimated to affect the majority of patients receiving certain anti-cancer drug regimens and can be treatment-limiting, even for life-saving medications. Despite seemingly numerous options, such as antimuscarinic anticholinergics, antihistamines, 5-HT3 receptor antagonists, dopamine receptor antagonists, and neurokinin-1 receptor antagonists, preventative therapies are often inadequately effective, particularly for “delayed CINV”-leaving an important unmet clinical need.

Cannabinoid receptor agonists, by virtue of their unique mechanism of action and efficacy and safety data reported in clinical trials, appear to offer a useful additional option.

The mechanistic value of cannabinoids has been well known for many years, but these agents may have been underutilized in the past because of the notoriety and legal status of marijuana. While botanical marijuana contains nearly 500 components, including the psychoactive tetrahydrocannabinol (THC), nabilone is an established, single-entity synthetic cannabinoid receptor agonist that has become the focus of renewed interest. We review the basic pharmacology and clinical trial data of nabilone for use in prophylaxis and treatment of CINV.”

Leaner and greener analysis of cannabinoids

Analytical and Bioanalytical Chemistry

“There is an explosion in the number of labs analyzing cannabinoids in marijuana (Cannabis sativa L., Cannabaceae) but existing methods are inefficient, require expert analysts, and use large volumes of potentially environmentally damaging solvents. The objective of this work was to develop and validate an accurate method for analyzing cannabinoids in cannabis raw materials and finished products that is more efficient and uses fewer toxic solvents.

An HPLC-DAD method was developed for eight cannabinoids in cannabis flowers and oils using a statistically guided optimization plan based on the principles of green chemistry. A single-laboratory validation determined the linearity, selectivity, accuracy, repeatability, intermediate precision, limit of detection, and limit of quantitation of the method. Amounts of individual cannabinoids above the limit of quantitation in the flowers ranged from 0.02 to 14.9% w/w, with repeatability ranging from 0.78 to 10.08% relative standard deviation. The intermediate precision determined using HorRat ratios ranged from 0.3 to 2.0. The LOQs for individual cannabinoids in flowers ranged from 0.02 to 0.17% w/w.

We developed an optimized HPLC-DAD method with reduced extraction time and greener solvents for adoption into cannabis testing laboratories. Sample turnaround is significantly reduced, while method validation confirmed that the method produces repeatable, accurate results. The sample preparation eliminates the use of chloroform, which has been routinely used in cannabinoid analysis, reducing material costs, use of greener solvents, and improved laboratory safety for personnel. This method can be used in a variety of settings from clinical studies, research, quality control, and regulatory evaluation of this growing industry.

This is a significant improvement over previous methods and is suitable for a wide range of applications including regulatory compliance, clinical studies, direct patient medical services, and commercial suppliers.”

https://link.springer.com/article/10.1007/s00216-017-0256-3

The cannabinoid 1 receptor antagonist, AM251, prolongs the survival of rats with severe acute pancreatitis.

Image result for Tohoku J Exp Med.

“It has recently been recognized that anandamide (arachidonylethanolamide), which is an endogeneous-cannabinoid (endocannabinoid), mediates septic shock.

Cannabinoid means a mind-active material in cannabis (marijuana).

Anandamide is mainly produced by macrophages. Cannabinoid 1 (CB1) receptor, which is one of the cannabiniod receptors, is also known to mediate hypotensive shock.

The role of endocannabinoids in the progression of acute pancreatitis is unclear. The aims of this study are to clarify their relationship and to find a new therapeutic strategy by regulating the endocannabinoid signaling in acute pancreatitis.

This is the first report to show that endocannabinoids are involved in the deterioration of acute pancreatitis and that the down-regulation of endocannabinoid signaling may be a new therapeutic strategy for severe acute pancreatitis.”

Regulation of Adult Neurogenesis by Cannabinoids

Image result for researchgate

“In the adult mammalian brain, new neurons are born throughout life, and these new cells may influence learning, memory, olfaction, and even mood. The putative function of these new neurons suggests that manipulation of adult neurogenesis could be used therapeutically in the future, and emphasizes the importance of understanding how neurogenesis is regulated. Voluntary exercise and antidepressants are examples of factors that increase neurogenesis, while stress and drugs of abuse – alcohol, nicotine, psychostimulants, opiates – decrease neurogenesis. In contrast to the clear negative influence of these drugs of abuse, cannabinoids have mixed influence, with some marijuana-like compounds actually enhancing neurogenesis.”  https://www.researchgate.net/publication/264424221_Regulation_of_Adult_Neurogenesis_by_Cannabinoids

“The role of cannabinoids in adult neurogenesis”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543605/

“Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects”  http://www.jci.org/articles/view/25509

The potential for clinical use of cannabinoids in treatment of cardiovascular diseases.

Image result for Cardiovascular Therapeutics

“Cannabinoids, the constituents of the marijuana plant and their analogs, have not only neurobehavioral but also cardiovascular effects. Great advances in the last couple of decades have led to better understanding of the physiological effects of the cannabinoids and of their role in various cardiovascular pathologies. The potential therapeutic use of cannabinoids in various cardiac diseases, such as ischemic injury, heart failure, and cardiac arrhythmias, has been studied in animal models. The purpose of this article is to review the physiological cardiovascular properties of cannabinoids and to summarize the knowledge related to their potential therapeutic use.” https://www.ncbi.nlm.nih.gov/pubmed/20946323

“Cannabinoid system as a potential target for drug development in the treatment of cardiovascular disease.” https://www.ncbi.nlm.nih.gov/pubmed/15320476

Implication of cannabinoids in neurological diseases.

Image result for Cellular and Molecular Neurobiology

“1. Preparations from Cannabis sativa (marijuana) have been used for many centuries both medicinally and recreationally. 2. Recent advances in the knowledge of its pharmacological and chemical properties in the organism, mainly due to Delta(9)-tetrahydrocannabinol, and the physiological roles played by the endocannabinoids have opened up new strategies in the treatment of neurological and psychiatric diseases. 3. Potential therapeutic uses of cannabinoid receptor agonists include the management of spasticity and tremor in multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, cancer, and vasodilation that accompanies advanced cirrhosis. CB(1) receptor antagonists have therapeutic potential in Parkinson’s disease. 4. Dr. Julius Axelrod also contributed in studies on the neuroprotective actions of cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/16699878

“Medical marijuana: emerging applications for the management of neurologic disorders.” https://www.ncbi.nlm.nih.gov/pubmed/15458761

Can cannabinoids be a potential therapeutic tool in amyotrophic lateral sclerosis?

Image result for Neural Regeneration Research

“Amyotrophic lateral sclerosis (ALS) is the most common degenerative disease of the motor neuron system. Over the last years, a growing interest was aimed to discovery new innovative and safer therapeutic approaches in the ALS treatment. In this context, the bioactive compounds of Cannabis sativa have shown antioxidant, anti-inflammatory and neuroprotective effects in preclinical models of central nervous system disease. However, most of the studies proving the ability of cannabinoids in delay disease progression and prolong survival in ALS were performed in animal model, whereas the few clinical trials that investigated cannabinoids-based medicines were focused only on the alleviation of ALS-related symptoms, not on the control of disease progression. The aim of this report was to provide a short but important overview of evidences that are useful to better characterize the efficacy as well as the molecular pathways modulated by cannabinoids.”  https://www.ncbi.nlm.nih.gov/pubmed/28197175

“The endocannabinoid system in amyotrophic lateral sclerosis. There is increasing evidence that cannabinoids and manipulation of the endocannabinoid system may have therapeutic value in ALS. Cannabinoids exert anti-glutamatergic and anti-inflammatory actions through activation of the CB(1) and CB(2) receptors. The ability of cannabinoids to target multiple neurotoxic pathways in different cell populations may increase their therapeutic potential in the treatment of ALS.” http://www.ncbi.nlm.nih.gov/pubmed/18781981

“Abnormal sensitivity of cannabinoid CB1 receptors in the striatum of mice with experimental amyotrophic lateral sclerosis (ALS). Our data suggest that cannabinoid CB1 receptors might be potential therapeutic targets for this dramatic disease.” http://www.ncbi.nlm.nih.gov/pubmed/19452308

“Cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. Cannabinoid CB2 receptor-selective compounds may be the basis for developing new drugs for the treatment of ALS and other chronic neurodegenerative diseases.” http://www.ncbi.nlm.nih.gov/pubmed/16781706

“Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. The cannabinoid receptor system has the potential to reduce both excitotoxic and oxidative cell damage. Here we report that treatment with Delta(9)-tetrahydrocannabinol (Delta(9)-THC) was effective. As Delta(9)-THC is well tolerated, it and other cannabinoids may prove to be novel therapeutic targets for the treatment of ALS.” http://www.ncbi.nlm.nih.gov/pubmed/15204022

“Δ9-Tetrahydrocannabinol (Δ9-THC) is the main psychoactive constituent in the plant Cannabis sativa (marijuana) and produces its effects by activation of cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) cannabinoid receptors. Administration of the non-selective partial cannabinoid agonists Δ9-THC or cannabinol are successful in delaying motor impairment and prolonging survival in mice after the onset of symptoms. Collectively, these studies suggest that cannabinoid receptors might serve as novel therapeutic targets for ALS drug development. CB2 agonists may slow motor neuron degeneration and preserve motor function, and represent a novel therapeutic modality for treatment of ALS.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819701/

“Cannabinoids exert neuroprotective and symptomatic effects in amyotrophic lateral sclerosis (ALS)” http://www.ncbi.nlm.nih.gov/pubmed/22594565

“Therapeutic options for amyotrophic lateral sclerosis (ALS) remain limited. Evidence suggests that cannabinoids, the bioactive ingredients of marijuana (Cannabis sativa) might have some therapeutic benefit in this disease. We found that this treatment significantly delays disease onset. Cannabinoids might be useful in ameliorating symptoms in ALS.” http://www.ncbi.nlm.nih.gov/pubmed/16183560

“Marijuana is a substance with many properties that may be applicable to the management of amyotrophic lateral sclerosis (ALS). These include analgesia, muscle relaxation, bronchodilation, saliva reduction, appetite stimulation, and sleep induction. In addition, marijuana has now been shown to have strong antioxidative and neuroprotective effects. Marijuana should be considered in the pharmacological management of ALS.” http://www.ncbi.nlm.nih.gov/pubmed/11467101

“Ideally, a multidrug regimen would be required to comprehensively address the known pathophysiology of ALS. REMARKABLY, cannabis appears to have activity in all of those areas. Cannabis has powerful antioxidative, anti-inflammatory, and neuroprotective effects. Cannabis might significantly slow the progression of ALS, potentially extending life expectancy and substantially reducing the overall burden of the disease.” http://www.ncbi.nlm.nih.gov/pubmed/20439484

“In light of the above findings, there is a valid rationale to propose the use of cannabinoid compounds in the pharmacological management of ALS patients. Cannabinoids indeed are able to delay ALS progression and prolong survival.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270417/

http://www.thctotalhealthcare.com/category/amyotrophic-lateral-sclerosis-als-lou-gehrigs-disease/

Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection.

Image result for Epilepsy Behav

“The isolation and identification of the discrete plant cannabinoids in marijuana revived interest in analyzing historical therapeutic claims made for cannabis in clinical case studies and anecdotes. In particular, sources as old as the 11th and 15th centuries claimed efficacy for crude marijuana extracts in the treatment of convulsive disorders, prompting a particularly active area of preclinical research into the therapeutic potential of plant cannabinoids in epilepsy.

Since that time, a large body of literature has accumulated describing the effects of several of the >100 individual plant cannabinoids in preclinical models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. We surveyed the literature for relevant reports of such plant cannabinoid effects and critically reviewed their findings.

We found that acute CB1R agonism in simple models of acute seizures in rodents typically produces anti-convulsant effects whereas CB1R antagonists exert converse effects in the same models. However, when the effects of such ligands are examined in more complex models of epilepsy, epileptogenesis and neuroprotection, a less simplistic narrative emerges.

Here, the complex interactions between (i) brain regions involved in a given model, (ii) relative contributions of endocannabinoid signaling to modulation of synaptic transmission in such areas, (iii) multi-target effects, (iv) cannabinoid type 1 and type 2 receptor signaling interactions and, (v) timing, (vi) duration and (vii) localization of ligand administration suggest that there is both anti-epileptic therapeutic potential and a pro-epileptic risk in up- and down-regulation of endocannabinoid signaling in the central nervous system.

Factors such receptor desensitization and specific pharmacology of ligands used (e.g. full vs partial agonists and neutral antagonists vs inverse agonists) also appear to play an important role in the effects reported.

Furthermore, the effects of several plant cannabinoids, most notably cannabidiol (CBD) and cannabidavarin (CBDV), in models of seizures, epilepsy, epileptogenesis, and neuroprotection are less ambiguous, and consistent with reports of therapeutically beneficial effects of these compounds in clinical studies.

However, continued paucity of firm information regarding the therapeutic molecular mechanism of CBD/CBDV highlights the continued need for research in this area in order to identify as yet under-exploited targets for drug development and raise our understanding of treatment-resistant epilepsies.

The recent reporting of positive results for cannabidiol treatment in two Phase III clinical trials in treatment-resistant epilepsies provides pivotal evidence of clinical efficacy for one plant cannabinoid in epilepsy.

Moreover, risks and/or benefits associated with the use of unlicensed Δ9-THC containing marijuana extracts in pediatric epilepsies remain poorly understood.

Therefore, in light of these paradigm-changing clinical events, the present review’s findings aim to drive future drug development for newly-identified targets and indications, identify important limitations of animal models in the investigation of plant cannabinoid effects in the epilepsies, and focuses future research in this area on specific, unanswered questions regarding the complexities of endocannabinoid signaling in epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/28190698

Cannabinoids activate monoaminergic signaling to modulate key C. elegans behaviors.

Image result for J Neurosci

“Cannabis or marijuana, a popular recreational drug, alters sensory perception and exerts a range of potential medicinal benefits.

The present study demonstrates that the endogenous cannabinoid receptor agonists, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) activate a canonical cannabinoid receptor in C. elegans and also modulate monoaminergic signaling at multiple levels.

2-AG or AEA inhibit nociception and feeding through a pathway requiring the cannabinoid-like receptor, NPR-19. 2-AG or AEA activate NPR-19 directly and cannabinoid-dependent inhibition can be rescued in npr-19 null animals by the expression of a human cannabinoid receptor, CB1, highlighting the orthology of the receptors.

Cannabinoids also modulate nociception and locomotion through an NPR-19-independent pathway requiring an α2A-adrenergic-like octopamine receptor, OCTR-1, and a 5-HT1A-like receptor, SER-4, that involves a complex interaction among cannabinoid, octopaminergic and serotonergic signaling. 2-AG activates OCTR-1 directly. In contrast, 2-AG does not activate SER-4 directly, but appears to enhance SER-4-dependent serotonergic signaling by increasing endogenous 5-HT.

This study defines a conserved cannabinoid signaling system in C. elegans, demonstrates the cannabinoid-dependent activation of monoaminergic signaling and highlights the advantages of studying cannabinoid signaling in a genetically-tractable whole animal model.

SIGNIFICANCE STATEMENTCannabis sativa causes euphoria and exerts a wide range of medicinal benefits. For years, cannabinoids have been studied at the cellular level using tissue explants with conflicting results. To better understand cannabinoid signaling, we have used the C. elegans model to examine the effects of cannabinoids on behavior. The present study demonstrates that mammalian cannabinoid receptor ligands activate a conserved cannabinoid signaling system in C. elegans and also modulate monoaminergic signaling, potentially impacting an array of disorders, including anxiety and depression. This study highlights the potential role of cannabinoids in modulating monoaminergic signaling, and the advantages of studying cannabinoid signaling in a genetically-tractable, whole-animal model.”

https://www.ncbi.nlm.nih.gov/pubmed/28188220

Can Marijuana Cure Cancer? Pharmaceutical Company Developing Cannabis Medicine To Treat Brain Cancer

“Can Marijuana Cure Cancer? Pharmaceutical Company Developing Cannabis Medicine To Treat Brain Cancer” http://www.ibtimes.com/can-marijuana-cure-cancer-pharmaceutical-company-developing-cannabis-medicine-treat-2489282

“GW Pharmaceuticals Achieves Positive Results in Phase 2 Proof of Concept Study in Glioma” http://ir.gwpharm.com/releasedetail.cfm?ReleaseID=1010672
 
“Cannabinoid Drug Prolongs the Life of Brain Tumor Patients in Phase II Trials” http://labiotech.eu/gw-pharmaceuticals-brain-tumor/
“Drug Company Claims to Have Marijuana Treatment That Could Increase Lifespan of Brain Cancer Patients” http://www.complex.com/life/2017/02/gw-pharmaceuticals-claims-to-have-treatment-that-could-increase-lifespan-of-brain-cancer-patients
 “GW Pharma’s cannabis-derived combo med helps brain cancer patients” http://www.fiercebiotech.com/biotech/gw-pharma-s-cannabis-derived-combo-med-helps-brain-cancer-patients
“GW pharmaceuticals to develop oncology portfolio after cannabis medication shows promising results” http://www.telegraph.co.uk/business/2017/02/07/gw-pharmaceuticals-develop-oncology-portfolio-cannabis-medication/
“GW Pharma is touting claims that a combination of tetrahydrocannabinol (THC) and cannabidiol (CBD) produced positive survival benefits in a small study of 21 patients with recurrent glioblastoma multiforme, a common form of brain cancer.” https://endpts.com/gw-touts-positive-survival-benefit-in-small-brain-cancer-study-ablynx-files-for-ultra-rare-disease-drug-ok/

“GW Pharmaceuticals Is Set to Benefit as Cannabis Takes on Cancer”  https://www.thestreet.com/story/13996559/1/gw-pharmaceuticals-is-set-to-benefit-as-cannabis-takes-on-cancer.html

“GW Pharmaceuticals Achieves Positive Results In Phase 2 Proof Of Concept Study In Glioma” https://www.clinicalleader.com/doc/gw-pharmaceuticals-phase-proof-of-concept-study-in-glioma-0001