Are Cannabinoids Effective for Orofacial Pain States?

“…there is increasing attention being given in the media as well as in the biomedical sciences to the use as analgesic agents of the crude extracts of plants of the genus Cannabis (eg, marijuana) and their active ingredient delta 9-tetrahydrocannabinol (Δ9-THC).

These cannabinoid compounds have been reported in the biomedical literature to be beneficial in the treatment of some types of neuropathic pain and other pain states…

This review has found evidence indicating that they may be effective analgesic agents for neuropathic pain conditions refractory to other therapeutic approaches…

The clinical findings pointing to the usefulness of the cannabinoids for pain relief are supported by a growing body of evidence from basic science investigations addressing the possible efficacy and mechanisms of action of the cannabinoids in animal models of acute or chronic pain.

These preclinical findings add to the growing evidence that cannabinoid receptor agonists may be effective agents for the treatment of neuropathic pain and other types of pain.

They also point to their possible clinical utility in acute or chronic orofacial pain conditions, and thereby suggest an affirmative answer applies to the question posed in the title of this editorial.”

http://www.quintpub.com/journals/ofph/abstract.php?article_id=15025#.VPBsU033-iw

http://www.thctotalhealthcare.com/category/pain-2/

Neuroprotective Effect of(−)Δ9-Tetrahydrocannabinol and Cannabidiol in N-Methyl-d-Aspartate-Induced Retinal Neurotoxicity

“In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death.

In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic Δ9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation…

The neuroprotection by THC and CBD was because of attenuation of peroxynitrite.

The effect of THC was in part mediated by the cannabinoid receptor CB1.

These results suggest the potential use of CBD as a novel topical therapy for the treatment of glaucoma.

THC and CBD, are similarly potent antioxidants that protect neuron cultures from glutamate-induced cell death or oxidative stress…

In addition to possessing neuroprotective or retinal neuroprotective activity… cannabinoids, such as THC, have been demonstrated to induce dose-related reductions in intraocular pressure in human and in animal models. 

This suggests that cannabinoids may offer a multifaceted therapy for glaucoma.

In conclusion, our results indicate that lipid peroxidation and ONOO− formation play an important role in NMDA-induced retinal neurotoxicity and cell loss in the retina, and that THC and CBD, by reducing the formation of these compounds, are effective neuroprotectants.

The present studies could form the basis for the development of new topical therapies for the treatment of glaucoma.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892413/

http://www.thctotalhealthcare.com/category/glaucoma-2/

Protective effects of Delta(9)-tetrahydrocannabinol against N-methyl-d-aspartate-induced AF5 cell death.

Image result for delta-9-tetrahydrocannabinol

“One of the most promising potential medical applications of cannabinoids involves their ability to protect cells from a variety of toxic events.

Cannabinoids have been reported to protect neurons from death…

Cannabinoids, such as the pharmacologically active component of marijuana (-)Δ9-tetrahydrocannabinol (THC)…

The neuroprotective effects of Δ9-tetrahydrocannabinol (THC) were examined…

Protective effects of Delta(9)-tetrahydrocannabinol… THC may function as an antioxidant to increase cell survival… 

THC can produce receptor-independent neuroprotective or cellular protective effects at micromolar concentrations as a result of its antioxidant properties…

In conclusion, THC produces a potent neuroprotective effect…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1824211/

Delta9-tetrahydrocannabinol protects hippocampal neurons from excitotoxicity.

Image result for delta-9-tetrahydrocannabinol

“Excitotoxic neuronal death underlies many neurodegenerative disorders…

Delta9-tetrahydrocannabinol protects hippocampal neurons from excitotoxicity…

…desensitization of CB(1) receptors diminishes the neuroprotective effects of cannabinoids.

This study demonstrates the importance of agonist efficacy and the duration of treatment on the neuroprotective effects of cannabinoids.

It will be important to consider these effects on neuronal survival when evaluating pharmacologic treatments that modulate the endocannabinoid system.”

http://www.ncbi.nlm.nih.gov/pubmed/17140550

“Molecular Mechanisms of Cannabinoid Protection from Neuronal Excitotoxicity” http://molpharm.aspetjournals.org/content/69/3/691.long

Sativex in the management of multiple sclerosis-related spasticity: role of the corticospinal modulation.

“Sativex is an emergent treatment option for spasticity in patients affected by multiple sclerosis (MS).

This oromucosal spray, acting as a partial agonist at cannabinoid receptors, may modulate the balance between excitatory and inhibitory neurotransmitters, leading to muscle relaxation that is in turn responsible for spasticity improvement.

The aim of our study was to investigate the role of Sativex in improving spasticity and related symptomatology in MS patients by means of an extensive neurophysiological assessment of sensory-motor circuits…

Our data showed an increase of intracortical inhibition, a significant reduction of spinal excitability, and an improvement in spasticity and associated symptoms.

Thus, we can speculate that Sativex could be effective in reducing spasticity by means of a double effect on intracortical and spinal excitability.”

Cannabidiol (CBD) and its analogs: a review of their effects on inflammation.

“First isolated from Cannabis in 1940 by Roger Adams, the structure of CBD was not completely elucidated until 1963.

Subsequent studies resulted in the pronouncement that THC was the ‘active’ principle of Cannabis and research then focused primarily on it to the virtual exclusion of CBD.

This was no doubt due to the belief that activity meant psychoactivity that was shown by THC and not by CBD.

In retrospect this must be seen as unfortunate since a number of actions of CBD with potential therapeutic benefit were downplayed for many years.

In this review, attention will be focused on the effects of CBD in the broad area of inflammation where such benefits seem likely to be developed.

Topics covered in this review are; the medicinal chemistry of CBD, CBD receptor binding involved in controlling Inflammation, signaling events generated by CBD, downstream events affected by CBD (gene expression and transcription), functional effects reported for CBD and combined THC plus CBD treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/25703248

Exploiting Cannabinoid-Induced Cytotoxic Autophagy to Drive Melanoma Cell Death.

“While the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain less than 10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wildtype tumours.

Targeting autophagy is a novel means to promote cancer cell death in chemotherapy-resistant tumours and the aim of the present study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma.

Treatment with Δ9-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability and activation of apoptosis, while co-treatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro.

Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wildtype melanoma xenografts substantially inhibited melanoma viability, proliferation and tumour growth paralleled by an increase in autophagy and apoptosis compared to standard single agent temozolomide.

Collectively our findings suggest THC activates non-canonical autophagy-mediated apoptosis of melanoma cells, suggesting cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease.”

http://www.ncbi.nlm.nih.gov/pubmed/25674907

http://www.thctotalhealthcare.com/category/melanoma/

Evaluation of Phytocannabinoids from High Potency Cannabis sativa using In Vitro Bioassays to Determine Structure-Activity Relationships for Cannabinoid Receptor 1 and Cannabinoid Receptor 2.

“Cannabis has been around for thousands of years and has been used recreationally, medicinally, and for fiber.

Over 500 compounds have been isolated from Cannabis sativa with approximately 105 being cannabinoids. Of those 105 compounds, Δ9-tetrahydrocannabinol has been determined as the primary constituent, which is also responsible for the psychoactivity associated with Cannabis.

Cannabinoid receptors belong to the large superfamily of G protein-coupled receptors.

Targeting the cannabinoid receptors has the potential to treat a variety of conditions such as pain, neurodegeneration, appetite, immune function, anxiety, cancer, and others.

Developing in vitro bioassays to determine binding and functional activity of compounds has the ability to lead researchers to develop a safe and effective drug that may target the cannabinoid receptors…”

http://www.ncbi.nlm.nih.gov/pubmed/25419092

Δ9 -tetrahydrocannabinol and cannabidiol as potential curative agents for cancer. A critical examination of the preclinical literature.

“An internet search with searchwords “cannabis cures cancer” produce a wealth of sites claiming that cannabis has this effect. These sites are freely accessible to the general public and thus contribute to public opinion. But do Δ9 -tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD) cure cancer? In the absence of clinical data other than a safety study and case reports, preclinical data should be evaluated in terms of its predictive value. Using a strict approach where only concentrations and/or models relevant to the clinical situation are considered, the current preclinical data does not yet provide robust evidence that systemically administered Δ9 -THC will be useful for the curative treatment of cancer. There is more support for an intratumoural route of administration of higher doses of Δ9 -THC. CBD produces effects in relevant concentrations and models, although more data are needed concerning its use in conjunction with other treatment strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/25669486

http://www.thctotalhealthcare.com/category/cancer/

Fatty Acid Binding Proteins (FABPs) are Intracellular Carriers for Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD).

Image result for fatty acid binding proteins

“Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex.

Recent reports suggest that CBD and THC elevates the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance.

Fatty acid binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH).

By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and we demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs.

Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption.

Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD.

Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids.

These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy towards epilepsy and other neurological disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/25666611