Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent

Logo of bctt

“Breast cancer is the leading cause of cancer-related deaths among women aged 34–50 worldwide, and is the most commonly diagnosed metastasizing tumor in women of all ages. Despite advances in understanding breast cancer as a disease, there remains a critical need for novel disease-modifying therapeutics.

Nonspecific cannabinoids, cannabinoid receptor 2 (CB2)-selective, as well as cannabinoid receptor 1 (CB1)-selective compounds have yielded similar antitumor results in several tumor models. The lack of neuronal expression of CB2 receptors precludes CB2 selective compounds from inducing the psychotropic effects that typically accompany CB1 activation.

 Our group and others have shown that CB2 agonists displaying selectivity for the CB2 receptor can decrease tumor cell viability and significantly attenuate cancer-induced bone pain without displaying psychoactive or addictive properties.

…antitumor effects of cannabinoids have been demonstrated in a variety of tumor models…

The antiproliferative effects of a CB2 agonist along with our previous work demonstrating significant efficacy in inhibiting bone cancer pain and slowing bone loss in a murine model of advanced breast cancer strongly suggest that CB2 agonists should be investigated in humans as adjunct therapy for advanced stages of breast cancer.

 Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems.
The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor.
Several groups have shown that both nonselective cannabinoid and CB2-specific compounds decrease breast cancer viability in vitro and in vivo: Δ9-tetrahydrocannabinol and CB2-selective agonist, JWH-133, have been demonstrated to exert considerable antitumoral effects…”

Phytocannabinoids and cannabimimetic drugs: recent patents in central nervous system disorders.

“Starting from the chemical structure of phytocannabinoids, isolated from Cannabis sativa plant, research groups designed numerous cannabimimetic drugs.

These compounds according to their activities can be partial, full agonists and antagonists of cannabinoid receptors.

Anecdotal reports and scientific studies described beneficial properties of cannabinoids and their derivatives in several pathological conditions like neurological and neuropsychiatric disorders, and in many other diseases ranging from cancer, atherosclerosis, stroke, hypertension, inflammatory related disorders, and autoimmune diseases.

The cannabinoid CB1 receptor was considered particularly interesting for therapeutic approaches in neurological diseases, because primarily expressed by neurons of the central nervous system. In many experimental models, these drugs act via this receptor, however, CB1 receptor independent mechanisms have been also described. Furthermore, endogenous ligands of cannabinoid receptors, the endocannabinoids, are potent modulators of the synaptic function in the brain. In neurological diseases, numerous studies reported modulation of the levels of endocannabinoids according to the phase of the disease and its progression.

CONCLUSIONS:

Finally, although the study of the mechanisms of action of these compounds is still unsolved, many reports and patents strongly suggest therapeutic potential of these compounds in neurological diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27184693

The Influence of Biomechanical Properties and Cannabinoids on Tumor Invasion.

Image result for Cell Adhesion & Migration journal

“Cannabinoids are known to have an anti-tumorous effect, but the underlying mechanisms are only sparsely understood. Mechanical characteristics of tumor cells represent a promising marker to distinguish between tumor cells and the healthy tissue.

We tested the hypothesis whether cannabinoids influence the tumor cell specific mechanical and migratory properties and if these factors are a prognostic marker for the invasiveness of tumor cells.

Here we could show that a “generalized stiffness” is a profound marker for the invasiveness of a tumor cell population in our model and thus might be of high clinical relevance for drug testing.

Additionally cannabinoids were shown to be of potential use for therapeutic approaches of glioblastoma.”

http://www.ncbi.nlm.nih.gov/pubmed/27149140

“Glioblastomas (GBM) are tumors that arise from astrocytes—the star-shaped cells that make up the “glue-like,” or supportive tissue of the brain. These tumors are usually highly malignant (cancerous) because the cells reproduce quickly and they are supported by a large network of blood vessels. Glioblastomas are generally found in the cerebral hemispheres of the brain, but can be found anywhere in the brain or spinal cord.”  http://www.abta.org/brain-tumor-information/types-of-tumors/glioblastoma.html?referrer=https://www.google.com/

Targeting Cannabinoid Receptors in Brain Tumors

Image result for springerlink

“Cannabinoids, the active components of Cannabis sativa L., act in the body by mimicking endogenous substances — the endocannabinoids — that activate specific cell surface receptors.

Cannabinoids exert various palliative effects in cancer patients. In addition, cannabinoids inhibit the growth of different types of tumor cells, including glioma cells, in laboratory animals. They do so by modulating key cell signaling pathways, mostly the endoplasmic reticulum stress response, thereby inducing antitumoral actions such as the apoptotic death of tumor cells and the inhibition of tumor angiogenesis.

Of interest, cannabinoids seem to be selective antitumoral compounds as they kill glioma cells but not their nontransformed astroglial counterparts.

On the basis of these preclinical findings, a pilot clinical study of Δ9-tetrahydrocannabinol (Δ9-THC) in patients with recurrent glioblastoma multiforme has been recently run. The fair safety profile of Δ9-THC, together with its possible growth-inhibiting action on tumor cells, may set the basis for future trials aimed at evaluating the potential antitumoral activity of cannabinoids.”

http://link.springer.com/chapter/10.1007%2F978-0-387-74349-3_17

Study: Cannabinoids Limit Neuroblastoma Cell Proliferation

Study: Cannabinoids Limit Neuroblastoma Cell Proliferation

“The administration of the cannabinoids THC and CBD limit cancer activity in neuroblastoma cells in culture and in animals, according to preclinical data published in the journal Current Oncology.

Neuroblastoma is an aggressive form of childhood cancer that often goes inadequately addressed by conventional treatment.

Investigators reported that both types of cannabinoids reduced neuroblastoma cell viability, but that CBD demonstrated superior anti-cancer ability. The study is the first to document the anti-cancer properties of CBD in this particular cancerous cell line.

They concluded, “Our findings about the activity of CBD in nbl (neuroblastoma) support and extend previous findings about the anti-tumor activities of CBD in other tumors and suggest that cannabis extracts enriched in CBD and not in THC could be suitable for the development of novel non-psychotropic therapeutic strategies in nbl.”  http://enewspf.com/2016/04/21/study-cannabinoids-limit-neuroblastoma-cell-proliferation/

“In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791143/?report=reader

New review sheds light on cannabinoids anticancer mechanisms

cannabinoids, cancer

“The palliative effects of cannabinoids on cancer-related symptoms are well established.

In fact, many drugs comprised of delta-9-tetrahydrocannabinol (THC) or its synthetic analogues are currently approved in Canada for use in the management of chemotherapy-induced nausea and vomiting, pain relief, and appetite stimulation.

While this may provide adequate treatment to the symptoms endured by cancer patients, what if cannabis can all together treat and cure cancer?

Latest discoveries on cannabinoids and their anticancer properties focus on their molecular mechanisms of action and have been discussed in a recently published review article in Current Oncology, a peer-reviewed journal (Velasco, Sanchez, & Guzman, 2016).

It is important to begin by understanding that our body possesses an endogenous cannabinoid system.”

https://news.liftcannabis.ca/2016/04/21/new-review-sheds-light-cannabinoids-anticancer-mechanisms/

“Anticancer mechanisms of cannabinoids”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791144/

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Suppression of invasion and metastasis in aggressive salivary cancer cells through targeted inhibition of ID1 gene expression.

Image result for Cancer Lett.

“Salivary gland cancer (SGC) represents the most common malignancy in the head and neck region, and often metastasizes to the lungs. The helix-loop-helix ID1 protein has been shown to control metastatic progression in many types of cancers.

Using two different approaches to target the expression of ID1 (genetic knockdown and progesterone receptor introduction combined with progesterone treatment), we previously determined that the aggressiveness of salivary gland tumor ACCM cells in culture was suppressed. Here, using the same approaches to target ID1 expression, we investigated the ability of ACCM cells to generate lung metastatic foci in nude mice.

Moreover, since both approaches would be challenging for applications in humans, we added a third approach, i.e., treatment of mice with a non-toxic cannabinoid compound known to down-regulate ID1 gene expression.

All approaches aimed at targeting the pro-metastatic ID1 gene led to a significant reduction in the formation of lung metastatic foci.

Therefore, targeting a key transcriptional regulator using different means results in the same reduction of the metastatic spread of SGC cells in animal models, suggesting a novel approach for the treatment of patients with aggressive SGC.”

http://www.ncbi.nlm.nih.gov/pubmed/27087608

“Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells… CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells…  Moreover, reducing Id-1 expression with cannabinoids could also provide a therapeutic strategy for the treatment of additional aggressive cancers because Id-1 expression was found to be up-regulated during the progression of almost all types…”  http://mct.aacrjournals.org/content/6/11/2921.long

http://www.thctotalhealthcare.com/tag/id-1/

Antitumorigenic targets of cannabinoids – current status and implications.

“Molecular structures of the endocannabinoid system have gained interest as potential pharmacotherapeutical targets for systemic cancer treatment.

The present review covers the contribution of the endocannabinoid system to cancer progression. Particular focus will be set on the accumulating preclinical data concerning antimetastatic, anti-invasive and anti-angiogenic mechanisms induced by cannabinoids.

Expert opinion: The main goal of targeting endocannabinoid structures for systemic anticancer treatment is the comparatively good safety profile of cannabinoid compounds.

In addition, antitumorigenic mechanisms of cannabinoids are not restricted to a single molecular cascade but involve multiple effects on various levels of cancer progression such as angiogenesis and metastasis. Particularly the latter effect has gained interest for pharmacological interventions.

Thus, drugs aiming at the endocannabinoid system may represent potential “antimetastatics” for an upgrade of a future armamentarium against cancer diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27070944

http://www.thctotalhealthcare.com/category/cancer/

Cannabis and cancer: toward a new understanding

Logo of curroncol

“The treatment of cancer, including the disease itself and the symptoms associated with cancer and its therapy, is one of the most important emerging frontiers in cannabinoid therapeutics.

This Current Oncology supplement brings together the work of some of the leading minds around the world who have dedicated themselves and their laboratories to understanding the role of cannabis and cannabinoids in the pathophysiology and management of cancer.

It is an unfortunate reality of 2016 that many doctors still lack the basic knowledge about cannabis, cannabinoids, and the endocannabinoid system that would enable them to have an informed discussion with their patients, and that the knowledge gap gives rise to stigmatization, alienation, and a fracture of the doctor–patient relationship.

Our patient describes her experience in trying to find answers and assistance, and with the help of her treating oncologist, she succeeds in securing legal access to cannabinoids, with remarkable results. Stories of this kind are occurring too often to be ignored or written off as placebo responses or outliers. As a medical profession, we are duty-bound to follow up on such experiences with critical and balanced investigation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791146/