Including cannabinoids in the treatment of painful schwannomatosis.

Brain and Behavior banner

“A 47‐year‐old man, affected by Schwannomatosis, presented a very severe pain (10/10, NRS) with paroxysmal shooting episodes, allodynia, paresthesia, and dysesthesia; in parallel, the patient had lost weight (from 70 to 49 kg) and experienced fatigue and deep depression. The previous pain prescription, including opioids and antineutopathic drugs, was fully ineffective. We progressively substituted this therapy with 15 drops, 3 times/daily, of THC/CBD in a concentration ratio 5:1, equal to 15 mg of active substance each time, reaching improvement in pain intensity (6/10) and in several other aspects as mood and quality of life”

https://www.ncbi.nlm.nih.gov/pubmed/29845778  

https://onlinelibrary.wiley.com/doi/abs/10.1002/brb3.1011

“Schwannomatosis is a rare genetic disorder that results in tumors (called schwannomas) that grow on the peripheral nerves throughout the body. It is recognized most often in people over the age of 30. Schwannomatosis can cause severe, debilitating pain and neurological dysfunction.”  https://www.hopkinsmedicine.org/neurology_neurosurgery/centers_clinics/neurofibromatosis/schwannomatosis/index.html

∆9-tetrahydrocannabinol inhibits epithelial-mesenchymal transition and metastasis by targeting matrix metalloproteinase-9 in endometrial cancer.

Journal Cover

“Limited therapeutic interventions are clinically available for treating aggressive endometrial cancer (EC). Therefore, effective therapies are urgently required.

Therefore, the present study investigated the role of ∆9-tetrahydrocannabinol (THC), which is reported to impact proliferative and migratory activities during impairment of cancer progression.

In the present study, cell migration in response to THC was measured using transwell assays. Using western blot analysis, the levels of cannabinoid receptors in EC tissues were detected and pathways leading to the inhibition of cell migration by THC on human EC cells were determined.

Results suggested that cannabinoid receptors were highly expressed in EC tissues.

Furthermore, THC inhibited EC cell viability and motility by inhibiting epithelial-mesenchymal transition (EMT) and downregulating matrix metalloproteinase-9 (MMP-9) gene expression in aggressive human EC cells.

The results have the potential to promote the development of novel compounds for the treatment of EC metastasis. The present findings suggest that THC may inhibit human EC cell migration through regulating EMT and MMP-9 pathways.”

https://www.ncbi.nlm.nih.gov/pubmed/29805589

https://www.spandidos-publications.com/10.3892/ol.2018.8407

Ventilatory-depressant effects of opioids alone and in combination with cannabinoids in rhesus monkeys.

 Cover image

“Pain is a serious health problem that is commonly treated with opioids, although the doses of opioids needed to treat pain are often similar to those that decrease respiration. Combining opioids with drugs that relieve pain through non-opioid mechanisms can decrease the doses of opioids needed for analgesia, resulting in an improved therapeutic window, but only if the doses of opioids that decrease respiration are not similarly decreased. Using small doses of opioids to treat pain has the potential to reduce the number of overdoses and deaths.

This study investigated whether the cannabinoid receptor agonists Δ9-tetrahydrocannabinol (Δ9-THC) and CP 55,940 modify the ventilatory-depressant effects of morphine and fentanyl in three monkeys.

In summary, cannabinoid receptor agonists, which increase the potency of opioids to produce antinociception, did not increase their potency to depress ventilation. Thus, the therapeutic window is greater for opioids when they are combined with cannabinoid receptor agonists, indicating a possible advantage for these drug mixtures in treating pain.”

https://www.ncbi.nlm.nih.gov/pubmed/29807027

https://www.sciencedirect.com/science/article/pii/S0014299918303108

Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort.

The Journal of Headache and Pain Cover Image

“Medicinal cannabis registries typically report pain as the most common reason for use. It would be clinically useful to identify patterns of cannabis treatment in migraine and headache, as compared to arthritis and chronic pain, and to analyze preferred cannabis strains, biochemical profiles, and prescription medication substitutions with cannabis.

RESULTS:

Of 2032 patients, 21 illnesses were treated with cannabis. Pain syndromes accounted for 42.4% (n = 861) overall; chronic pain 29.4% (n = 598;), arthritis 9.3% (n = 188), and headache 3.7% (n = 75;). Across all 21 illnesses, headache was a symptom treated with cannabis in 24.9% (n = 505). These patients were given the ID Migraine™ questionnaire, with 68% (n = 343) giving 3 “Yes” responses, 20% (n = 102) giving 2 “Yes” responses (97% and 93% probability of migraine, respectively). Therefore, 88% (n = 445) of headache patients were treating probable migraine with cannabis. Hybrid strains were most preferred across all pain subtypes, with “OG Shark” the most preferred strain in the ID Migraine™ and headache groups. Many pain patients substituted prescription medications with cannabis (41.2-59.5%), most commonly opiates/opioids (40.5-72.8%). Prescription substitution in headache patients included opiates/opioids (43.4%), anti-depressant/anti-anxiety (39%), NSAIDs (21%), triptans (8.1%), anti-convulsants (7.7%), muscle relaxers (7%), ergots (0.4%).

CONCLUSIONS:

Chronic pain was the most common reason for cannabis use, consistent with most registries. The majority of headache patients treating with cannabis were positive for migraine. Hybrid strains were preferred in ID Migraine™, headache, and most pain groups, with “OG Shark”, a high THC (Δ9-tetrahydrocannabinol)/THCA (tetrahydrocannabinolic acid), low CBD (cannabidiol)/CBDA (cannabidiolic acid), strain with predominant terpenes β-caryophyllene and β-myrcene, most preferred in the headache and ID Migraine™ groups. This could reflect the potent analgesic, anti-inflammatory, and anti-emetic properties of THC, with anti-inflammatory and analgesic properties of β-caryophyllene and β-myrcene. Opiates/opioids were most commonly substituted with cannabis. Prospective studies are needed, but results may provide early insight into optimizing crossbred cannabis strains, synergistic biochemical profiles, dosing, and patterns of use in the treatment of headache, migraine, and chronic pain syndromes.”

Randomised Controlled Trial (RCT) of cannabinoid replacement therapy (Nabiximols) for the management of treatment-resistant cannabis dependent patients: a study protocol.

Image result for bmc psychiatry

“The cannabis extract nabiximols (Sativex®) effectively supresses withdrawal symptoms and cravings in treatment resistant cannabis dependent individuals, who have high relapse rates following conventional withdrawal treatments.

This study examines the efficacy, safety and cost-effectiveness of longer-term nabiximols treatment for outpatient cannabis dependent patients who have not responded to previous conventional treatment approaches.

This is the first outpatient community-based randomised controlled study of nabiximols as an agonist replacement medication for treating cannabis dependence, targeting individuals who have not previously responded to conventional treatment approaches. The study and treatment design is modelled upon an earlier study with this population and more generally on other agonist replacement treatments (e.g. nicotine, opioids).”

https://www.ncbi.nlm.nih.gov/pubmed/29776349

“There is a need for more effective treatment approaches for cannabis dependent patients who are unable to discontinue their illicit use through psychosocial interventions alone. Longer-term agonist replacement treatment approaches rather than acute withdrawal management are likely to be more effective, with the combination of THC:CBD nabiximols preparation being potentially advantageous over synthetic THC analogues. This is the first large-scale outpatient RCT of nabiximols for this population, and has required the development of clinical and research methods specific to agonist treatment with a plant-derived cannabinoid formulation, building upon clinical research models previously used in opioid agonist treatment approaches.”

https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-018-1682-2

Sativex® as Add-on therapy Vs. further optimized first-line ANTispastics (SAVANT) in resistant multiple sclerosis spasticity: a double-blind, placebo-controlled randomised clinical trial.

Publication Cover

“Purpose/aim: To evaluate the efficacy of tetrahydrocannabinol [THC]:cannabidiol [CBD] oromucosal spray (Sativex®) as add-on therapy to optimized standard antispasticity treatment in patients with moderate to severe multiple sclerosis (MS) spasticity.

RESULTS:

Of 191 patients who entered Phase A, 106 were randomised in Phase B to receive add-on THC:CBD spray (n = 53) or placebo (n = 53). The proportion of clinically-relevant responders after 12 weeks (≥ 30% NRS improvement; primary efficacy endpoint) was significantly greater with THC:CBD spray than placebo (77.4 vs 32.1%; P < 0.0001). Compared with placebo, THC:CBD spray also significantly improved key secondary endpoints: changes in mean spasticity NRS (P < 0.0001), mean pain NRS (P = 0.0013), and mean modified Ashworth’s scale (P = 0.0007) scores from Phase B baseline to week 12. Adverse events, when present, were mild/moderate and without new safety concerns.

CONCLUSIONS:

Add-on THC:CBD oromucosal spray provided better and clinically relevant improvement of resistant MS spasticity compared with adjusting first-line antispasticity medication alone.”

https://www.ncbi.nlm.nih.gov/pubmed/29792372

https://www.tandfonline.com/doi/abs/10.1080/00207454.2018.1481066

Involvement of the CB2 cannabinoid receptor in cell growth inhibition and G0/G1 cell cycle arrest via the cannabinoid agonist WIN 55,212-2 in renal cell carcinoma.

Image result for bmc cancer

“The anti-tumor properties of cannabinoids have been investigated in many in vitro and in vivo studies. Many of these anti-tumor effects are mediated via cannabinoid receptor types 1 and 2 (CB1 and CB2), comprising the endocannabinoid system (ECS).

In this study, we investigated the ECS based on CB 1 and CB 2 receptor gene and protein expression in renal cell carcinoma (RCC) cell lines. In view of their further use for potential treatments, we thus investigated the roles of CB1 and CB2 receptors in the anti-proliferative action and signal transduction triggered by synthetic cannabinoid agonists [such as JWH-133 and WIN 55,212-2 (WIN-55)] in RCC cell lines.

RESULTS:

The CB1 and CB2 genes expression was shown by real-time PCR and flow cytometric and western blot analysis indicating a higher level of CB2 receptor as compared to CB1 in RCC cells. Immunocytochemical staining also confirmed the expression of the CB1 and CB2 proteins. We also found that the synthetic cannabinoid agonist WIN-55 exerted anti-proliferative and cytotoxic effects by inhibiting the growth of RCC cell lines, while the CB2 agonist JWH-133 did not. Pharmacologically blocking the CB1 and CB2 receptors with their respective antagonists SR141716A and AM-630, followed by the WIN-55 treatment of RCC cells allowed uncovering the involvement of CB2, which led to an arrest in the G0/G1 phase of the cell cycle and apoptosis.

CONCLUSIONS:

This study elucidated the involvement of CB2 in the in vitro inhibition of RCC cells, and future applications of CB2agonists in the prevention and management of RCC are discussed.

In summary, our study shows the involvement of CB2 receptor in the in vitro inhibition of RCC cells. This knowledge will be useful to unravel the future applications of CB2receptor and its agonists in the prevention and management of RCC.”

Cannabis for the Management of Cancer Symptoms: THC Version 2.0?

Cannabis and Cannabinoid Research cover image

“The landscape of medical cannabis is rapidly expanding. Cannabis preparations have been used in medicine for millennia, and now there is a strong renaissance in the study of their therapeutic properties.

The vast majority of controlled clinical trials that support the medical use of what is commonly known as “cannabis” or “marijuana” have actually been conducted with purified cannabinoids or a single extract of Cannabis sativa that contains an equimolecular proportion of Δ9-THC and CBD.

Based on these studies, THC/dronabinol (Marinol) and its synthetic analogue nabilone (Cesamet), as well as nabiximols (Sativex), are already approved by several regulatory agencies, including FDA, Health Canada, and EMA, as antiemetic, anticachexic, analgesic, or antispastic medicines.

This study provides a precious piece of information on the use of medical cannabis for the management of cancer symptoms.”

https://www.liebertpub.com/doi/10.1089/can.2018.0009

Targeting cannabinoid receptors in gastrointestinal cancers for therapeutic uses: current status and future perspectives

Publication Cover

“A number of studies have consistently shown that cannabinoids are able to prevent or reduce carcinogenesis in different animal models of colon cancer.

Cannabinoids, via CB1 and possibly CB2 receptors, suppress proliferation and migration and stimulate apoptosis in colorectal cancer cells.

Convincing scientific evidence suggests that cannabinoids, in addition to their well-known use in palliative care in oncology (e.g. improvement of appetite, attenuation of nausea associated to antitumoral medicines, alleviation of moderate neuropathic pain) can reduce, via antiproliferative and proapoptotic as well as by inhibiting angiogenesis, invasion and metastasis or by attenuating inflammation, the growth of cancer cells and hinder the development of experimental colon carcinogenesis in vivo.”

https://www.tandfonline.com/doi/full/10.1080/17474124.2017.1367663?src=recsys

Endocannabinoid system and anticancer properties of cannabinoids

Folia Biologica et Oecologica

“Cannabinoids impact human body by binding to cannabinoids receptors (CB1 and CB2).

The two main phytocannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

THC interacts with CB1 receptors occurring in central nervous system and is responsible for psychoactive properties of marijuana. CBD has low affinity to CB1 receptor, has no psychoactive characteristics and its medical applications can be wider.

CB receptors are part of a complex machinery involved in regulation of many physiological processes – endocannabinoid system.

Cannabinoids have found some applications in palliative medicine, but there are many reports concerning their anticancer affects.

Agonists of CB1 receptors stimulate accumulation of ceramides in cancer cells, stress of endoplasmic reticulum (ER stress) and, in turn, apoptosis. Effects of cannabinoids showing low affinity to CB receptors is mediated probably by induction of reactive oxygen species production.

Knowledge of antitumor activity of cannabinoids is still based only on preclinical studies and there is a necessity to conduct more experiments to assess the real potential of these compounds.”

https://content.sciendo.com/view/journals/fobio/12/1/article-p11.xml