[Cannabinoids for symptomatic therapy of multiple sclerosis].

“Spasticity represents a common troublesome symptom in patients with multiple sclerosis (MS). Treatment of spasticity remains difficult, which has prompted some patients to self-medicate with and perceive benefits from cannabis. Advances in the understanding of cannabinoid biology support these anecdotal observations.

Various clinical reports as well as randomized, double-blind, placebo-controlled studies have now demonstrated clinical efficacy of cannabinoids for the treatment of spasticity in MS patients. Sativex is a 1:1 mix of delta-9-tetrahydocannabinol and cannabidiol extracted from cloned Cannabis sativa chemovars, which recently received a label for treating MS-related spasticity in Germany.

The present article reviews the current understanding of cannabinoid biology and the value of cannabinoids as a symptomatic treatment option in MS.”

http://www.ncbi.nlm.nih.gov/pubmed/22080198

A new multiple sclerosis spasticity treatment option: effect in everyday clinical practice and cost-effectiveness in Germany.

“Sativex(®) (GW Pharmaceuticals PLC, Porton Down, UK; Laboratorios Almirall, SA, Barcelona, Spain), a cannabinoid oromucosal spray containing a 1:1 ratio of 9-δ-tetrahydrocannabinol and cannabidiol, has been licensed in Germany since July 2011 as add-on therapy for moderate-to-severe multiple sclerosis (MS) treatment-resistant spasticity symptoms.

The ‘MOVE 2′ study evaluated clinical outcomes, treatment satisfaction, quality of life (QoL) and provision of care in MS patients with spasticity receiving Sativex in everyday clinical practice. Data from 300 patients were collected from 42 specialized MS centers across Germany and were available for this analysis. Assessments, including the MS spasticity 0-10 numerical rating scale, modified Ashworth scale, patients’ and physicians’ clinical impressions, and QoL scales were rated at baseline and at 1 and 3 months after starting treatment with Sativex.

 Sativex provided relief of MS-related spasticity in the majority of patients who were previously resistant to treatment. In addition, clear improvements were noted in MS spasticity-associated symptoms (e.g., sleep quality, bladder function and mobility), activities of daily living and QoL. Sativex was generally well tolerated. The majority of patients (84%) reported no adverse events, and there was only a limited risk of serious adverse reactions.

Furthermore, based on data from Sativex clinical trials, a Markov model-based analysis has shown that Sativex is a cost-effective treatment option for patients with MS spasticity in Germany.”

http://www.ncbi.nlm.nih.gov/pubmed/23369055

Endocannabinoid system modulator use in everyday clinical practice in the UK and Spain.

“Spasticity is a disabling complication of multiple sclerosis. Some commonly used oral medications include baclofen, tizanidine, anticonvulsants and benzodiazepines, but their benefits are modest.

Sativex(®) (GW Pharmaceuticals PLC, Porton Down, UK; Laboratorios Almirall, SA, Barcelona, Spain) is a unique cannabinoid-based medicine with two main active ingredients; 9-δ-tetrahydrocannabinol, which acts mainly on cannabinoid 1 receptors in the CNS and plays a key role in the modulation of spasticity and spasms, and cannabidiol, which has different properties, including minimization of the psychoactivity associated with 9-δ-tetrahydrocannabinol. Sativex is indicated for symptomatic improvement in adult patients with moderate-to-severe multiple sclerosis-related spasticity who have not responded adequately to other first- or second-line antispasticity medications, and who demonstrate clinically significant improvement in spasticity-related symptoms during an initial trial of therapy.

Over the past couple of years, Sativex has been approved for use in a number of European countries and ongoing postmarketing studies are evaluating the possible risks associated with Sativex treatment by systematically collecting all suspected adverse reactions that occur in patients from the start of treatment. Interim data from the UK as well as Spanish Sativex safety registries confirm that clinical benefit is maintained over the longer term despite the expected trend for deterioration owing to disease progression.

 Even after more than 2 years of use, no new safety/tolerability signals have emerged with Sativex, including no evidence of driving impairment and no relevant incidence of falls or other adverse events of concern, such as psychiatric or nervous system events.

Sativex appears to be a well-tolerated and useful add-on therapy in patients who have not achieved an adequate response with traditional antispastic agents.”

http://www.ncbi.nlm.nih.gov/pubmed/23369054

Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease.

“Inflammatory bowel disease (IBD) is an incurable disease which affects millions of people in industrialised countries. Anecdotal and scientific evidence suggest that Cannabis use may have a positive impact in IBD patients.

 Here, we investigated the effect of cannabigerol (CBG), a non-psychotropic Cannabis-derived cannabinoid, in a murine model of colitis…

  In conclusion, CBG attenuated murine colitis, reduced nitric oxide production in macrophages (effect being modulated by the CB(2) receptor) and reduced ROS formation in intestinal epithelial cells.

CBG could be considered for clinical experimentation in IBD patients.”

http://www.ncbi.nlm.nih.gov/pubmed/23415610

Activation of Cannabinoid CB2 Receptor-Mediated AMPK/CREB Pathway Reduces Cerebral Ischemic Injury.

“The type 2 cannabinoid receptor (CB2R) was recently shown to mediate neuroprotection in ischemic injury. However, the role of CB2Rs in the central nervous system, especially neuronal and glial CB2Rs in the cortex, remains unclear. We, therefore, investigated anti-ischemic mechanisms of cortical CB2R activation in various ischemic models….

  Collectively, these data demonstrate that cortical CB2R activation by TC (trans-caryophyllene, a CB2R agonist,), ameliorates ischemic injury, potentially through modulation of AMPK/CREB signaling, and suggest that cortical CB2Rs might serve as a putative therapeutic target for cerebral ischemia.”

http://www.ncbi.nlm.nih.gov/pubmed/23414569

Cannabis and Δ(9)-tetrahydrocannabinol (THC) for weight loss?

“Obesity is one of the highest preventable causes of morbidity and mortality in the developed world. It has been well known for a long time that exposure to cannabis produces an increase of appetite (a phenomenon referred to as the ‘munchies’).

This phenomenon led to an exploration of the role of the endocannabinoid system in the regulation of obesity and associated metabolic syndrome. This effort subsequently led to the development of a successful therapeutic approach for obesity that consisted of blocking the cannabinoid CB(1) receptors using ligands such as Rimonabant in order to produce weight loss and improve metabolic profile. Despite being efficacious, Rimonabant was associated with increased rates of depression and anxiety and therefore removed from the market.

We recently discovered that the prevalence of obesity is paradoxically much lower in cannabis users as compared to non-users and that this difference is not accounted for by tobacco smoking status and is still present after adjusting for variables such as sex and age.

 Here, we propose that this effect is directly related to exposure to the Δ(9)-tetrahydrocannabinol (THC) present in cannabis smoke. We therefore propose the seemingly paradoxical hypothesis that THC or a THC/cannabidiol combination drug may produce weight loss and may be a useful therapeutic for the treatment of obesity and its complications.”

http://www.ncbi.nlm.nih.gov/pubmed/23410498

Role of cannabinoid and vanilloid receptors in invasion of human breast carcinoma cells.

“It is known that the diversified effects of cannabinoid on the fate of carcinoma cells are mediated predominantly through receptors. However, little is known about the effects of the individual activities of cannabinoid and noncannabinoid receptors. Here we investigate the role of cannabinoid receptor (CB) 1, CB2, and transient receptor potential vanilloid type 1 in cell proliferation and invasion patterns in the MDA-MB-231 cell line.

Our results showed that activation of CB1 and vanilloid receptors by methanandamide, a nonselective agonist, and arachidonyl-2′-choloroethylamide (ACEA) and N-oleoyldopamine, selective agonists, reduced invasion of MDA-MB-231 cells at pharmacological concentrations. Accordingly, CB1 activation resulted in decreased expression of matrix metalloproteinase (MMP) 2. On the other hand, administration of a CB2 agonist (CB65) increased cell invasion and expression of MMP2. The data obtained from MTT assay did not show any correlation between reduced invasion and cytotoxic effects of drugs. In addition, the level of vascular endothelial growth factor was significantly reduced in treatment with (R)-(+)-methanandamide, ACEA, CB65, and AM251 (a potent agonist for GPR55 and selective antagonist of CB1) compared with control. Elevated expression of cyclooxygenase-2 was observed in all of the MDA-MB-231 cells treated with agonists.

These results underline the influence of cannabinoid and vanilloid receptors on the invasiveness of MDA-MB-231 human breast carcinoma cells.”

http://www.ncbi.nlm.nih.gov/pubmed/23394450

The pharmacologic and clinical effects of medical cannabis.

“Cannabis, or marijuana, has been used for medicinal purposes for many years. Several types of cannabinoid medicines are available in the United States and Canada. Dronabinol (schedule III), nabilone (schedule II), and nabiximols (not U.S. Food and Drug Administration approved) are cannabis-derived pharmaceuticals.

Medical cannabis or medical marijuana, a leafy plant cultivated for the production of its leaves and flowering tops, is a schedule I drug, but patients obtain it through cannabis dispensaries and statewide programs. The effect that cannabinoid compounds have on the cannabinoid receptors (CB(1) and CB(2) ) found in the brain can create varying pharmacologic responses based on formulation and patient characteristics. The cannabinoid Δ(9) -tetrahydrocannabinol has been determined to have the primary psychoactive effects; the effects of several other key cannabinoid compounds have yet to be fully elucidated. Dronabinol and nabilone are indicated for the treatment of nausea and vomiting associated with cancer chemotherapy and of anorexia associated with weight loss in patients with acquired immune deficiency syndrome. However, pain and muscle spasms are the most common reasons that medical cannabis is being recommended.

Studies of medical cannabis show significant improvement in various types of pain and muscle spasticity. Reported adverse effects are typically not serious, with the most common being dizziness. Safety concerns regarding cannabis include the increased risk of developing schizophrenia with adolescent use, impairments in memory and cognition, accidental pediatric ingestions, and lack of safety packaging for medical cannabis formulations. This article will describe the pharmacology of cannabis, effects of various dosage formulations, therapeutics benefits and risks of cannabis for pain and muscle spasm, and safety concerns of medical cannabis use.”

http://www.ncbi.nlm.nih.gov/pubmed/23386598

Update on the Role of Cannabinoid Receptors after Ischemic Stroke

“The endocannabinoid system is considered as a major modulator of the cerebral blood flow, neuroinflammation, and neuronal survival… Evidence from animal models and in vitro studies suggests a global protective role for cannabinoid receptors agonists in ischemic stroke…Given its potent anti-inflammatory activities on circulating leukocytes, the CB2 activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke…

Synthetic cannabinoids have been also investigated in animal models showing an improvement of the ischemic injury in the liver, heart, and brain. Furthermore, phytocannabinoids have been also isolated from the Cannabis sativa. Since this plant contains about 80 different cannabinoids, a strong work is still needed to test all these active compounds. This delay in cannabinoid research might be also due to the very low dose of certain cannabinoids in the plant. Thus, since Δ9-tetrahydrocannabidiol (THC) and cannabidiol (CBD) represent up to 40% of the total cannabinoid mass, these compounds have been considered as the most active mediators…

The encouraging therapeutic results of this study are in partial contrast with previous case reports, suggesting a potential relationship between stroke and chronic cannabis abuse in young human beings…

We believe that the “cannabinoid” approach represents an interesting therapeutic strategy still requiring further validations to improve neurologic and inflammatory outcomes in ischemic stroke.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337695/

Modulation of The Balance Between Cannabinoid CB1 and CB2 Receptor Activation During Cerebral Ischemic/Reperfusion Injury

“A number of investigations have shown that CB2 receptor activation has anti-inflammatory therapeutic potential in various CNS diseases, such as multiple sclerosis, traumatic brain injury and Alzheimer’s disease. Because inflammatory responses have been shown to be important contributors to secondary injury following cerebral ischemia; the CB2 receptor has been investigated as a potential therapeutic target in stroke…

The most striking changes were obtained by combing a CB1 antagonist with a CB2 agonist. This combination elevated the cerebral blood flow during ischemia and reduced infarction by 75%…during cerebral ischemia/reperfusion injury, inhibition of CB1 receptor activation is protective while inhibition of CB2 receptor activation is detrimental.

 The greatest degree of neuroprotection was obtained by combining an inhibitor of CB1 activation with an exogenous CB2 agonist.

In conclusion, the results of this investigation demonstrate dynamic changes in the expression of CB1 and CB2 receptors during cerebral ischemic/reperfusion injury in mice. The effects of stimulation of these receptors on damage ischemia/reperfusion injury differed dramatically. Stimulation of the CB2 receptor was found to be neuroprotective, while inhibition of the CB1 receptor was also protective,too. The combination of a CB2 agonist and a CB1 antagonist provided the greatest degree of protection and indicated a synergistic effect derived from combining these agents. Therefore, changing the balance of stimulation of these receptors by endogenous cannabinoids may provide an important therapeutic strategy during stroke.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577828/