ANTINOCICEPTIVE TOLERANCE TO NSAIDS PARTIALLY MEDIATED VIA ENDOCANNABINOIDS IN ANTERIOR CINGULATE CORTEX OF RATS.

Image result for Georgian Med News

“Pain is characterized as a complex experience, dependent not only on the regulation of nociceptive sensory systems but also on the activation of mechanisms that control emotional processes in limbic brain areas.

Non-opioid, non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used analgesics in the treatment of not-severe pain. We have recently shown that repeated doses result in tolerance to these drugs like opioids.

Here we investigated the central brain mechanisms of non-opioid induced antinociception in the non-acute pain models of rats, such as the ‘formalin test’ and a relation between administration of NSAIDs in the limbic brain area, – the anterior cingulated cortex (ACC), – and the endocannabinoid system.

The present data support the notion that endocannabinoids’ CB1 receptor contributes in part to antinociceptive effects of NSAIDs and probably involved in activation of the descending opioid modulatory system of pain.”

Cellular localization and regulation of receptors and enzymes of the endocannabinoid system in intestinal and systemic inflammation.

“Surveys suggest that Cannabis provides benefit for people with inflammatory bowel disease.

However, mechanisms underlying beneficial effects are not clear. We performed in situ hybridization RNAscope® combined with immunohistochemistry to show cell-specific distribution and regulation of cannabinoid receptor 1 and 2 (CB1, CB2), G protein-coupled receptor 55 (GPR55), and monoacylglycerol lipase (MGL) mRNA in immune cells using murine models of intestinal and systemic inflammation.

In summary, our study reveals changes in gene expression of members of the endocannabinoid system in situ attesting particularly GPR55 and MGL a distinct cellular role in the regulation of the immune response to intestinal and systemic inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/30196316

https://link.springer.com/article/10.1007%2Fs00418-018-1719-0

Targeting Glioma Initiating Cells With A Combined Therapy Of Cannabinoids And Temozolomide.

Biochemical Pharmacology

“Glioblastoma multiforme (GBM) is the most frequent and aggressive type of brain tumor due, at least in part, to its poor response to current anticancer treatments. These features could be explained, at least partially, by the presence within the tumor mass of a small population of cells termed Glioma Initiating Cells (GICs) that has been proposed to be responsible for the relapses occurring in this disease. Thus, the development of novel therapeutic approaches (and specifically those targeting the population of GICs) is urgently needed to improve the survival of the patients suffering this devastating disease.

Previous observations by our group and others have shown that Δ9-Tetrahydrocannabinol (THC, the main active ingredient of marijuana) and other cannabinoids including cannabidiol (CBD) exert antitumoral actions in several animal models of cancer, including gliomas.

We also found that the administration of THC (or of THC + CBD at a 1:1 ratio) in combination with temozolomide, the benchmark agent for the treatment of GBM, synergistically reduces the growth of glioma xenografts.

In this work we investigated the effect of the combination of TMZ and THC:CBD mixtures containing different ratios of the two cannabinoids in preclinical glioma models, including those derived from GICs.

Our findings show that TMZ + THC:CBD combinations containing a higher proportion of CDB (but not TMZ + CBD alone) produce a similar antitumoral effect as the administration of TMZ together with THC and CBD at a 1:1 ratio in xenografts generated with glioma cell lines. In addition, we also found that the administration of TMZ + THC:CBD at a 1:1 ratio reduced the growth of orthotopic xenografts generated with GICs derived from GBM patients and enhanced the survival of the animals bearing these intracranial xenografts.

Remarkably, the antitumoral effect observed in GICs-derived xenografts was stronger when TMZ was administered together with cannabinoid combinations containing a higher proportion of CBD. These findings support the notion that the administration of TMZ together with THC:CBD combinations – and specifically those containing a higher proportion of CBD – may be therapeutically explored to target the population of GICs in GBM.”

The Endocannabinoid/Cannabinoid Receptor 2 System Protects Against Cisplatin-Induced Hearing Loss.

Image result for frontiers in cellular neuroscience

“Previous studies have demonstrated the presence of cannabinoid 2 receptor (CB2R) in the rat cochlea which was induced by cisplatin. In an organ of Corti-derived cell culture model, it was also shown that an agonist of the CB2R protected these cells against cisplatin-induced apoptosis.

In the current study, we determined the distribution of CB2R in the mouse and rat cochleae and examined whether these receptors provide protection against cisplatin-induced hearing loss.

These data unmask a protective role of the cochlear endocannabinoid/CB2R system which appears tonically active under normal conditions to preserve normal hearing. However, an exogenous agonist is needed to boost the activity of endocannabinoid/CB2R system for protection against a more traumatic cochlear insult, as observed with cisplatin administration.”

https://www.ncbi.nlm.nih.gov/pubmed/30186120

https://www.frontiersin.org/articles/10.3389/fncel.2018.00271/full

Cannabis analgesia in chronic neuropathic pain is associated with altered brain connectivity.

Home

“To characterize the functional brain changes involved in δ-9-tetrahydrocannabinol (THC) modulation of chronic neuropathic pain.

RESULTS:

THC significantly reduced patients’ pain compared to placebo. THC-induced analgesia was correlated with a reduction in functional connectivity between the anterior cingulate cortex (ACC) and the sensorimotor cortex. Moreover, the degree of reduction was predictive of the response to THC. Graph theory analyses of local measures demonstrated reduction in network connectivity in areas involved in pain processing, and specifically in the dorsolateral prefrontal cortex (DLPFC), which were correlated with individual pain reduction.

CONCLUSION:

These results suggest that the ACC and DLPFC, 2 major cognitive-emotional modulation areas, and their connections to somatosensory areas, are functionally involved in the analgesic effect of THC in chronic pain. This effect may therefore be mediated through induction of functional disconnection between regulatory high-order affective regions and the sensorimotor cortex. Moreover, baseline functional connectivity between these brain areas may serve as a predictor for the extent of pain relief induced by THC.”

https://www.ncbi.nlm.nih.gov/pubmed/30185448

http://n.neurology.org/content/early/2018/09/05/WNL.0000000000006293

Fast extraction of cannabinoids in marijuana samples by using hard-cap espresso machines.

Talanta

“A simple, quick and low cost procedure was developed for the extraction of Δ9-tetrahydrocannabinol, cannabidiol, and cannabinol from marijuana samples, based on the use of a hard-cap espresso extraction with 2-propanol. After extraction, cannabinoids were directly determined after appropriate dilution by gas-chromatography-mass spectrometry, reaching a limit of detection from 0.03 to 0.05 mg g-1. Extraction efficiency was evaluated by the comparison of results obtained for seized samples by the proposed method and a reference methodology based on ultrasound-assisted extraction. Moreover, ion mobility was proposed for the rapid and sensitive determination of Δ9-tetrahydrocannabinol and cannabidiol providing a quick response for the analysis of seized marijuana samples in 1 min, including extraction, dilution and determination.”

https://www.ncbi.nlm.nih.gov/pubmed/30172516

https://www.sciencedirect.com/science/article/pii/S0039914018308178?via%3Dihub

“Turns Out You Can Use Espresso Machines to Make Marijuana Extracts”  https://www.civilized.life/articles/espresso-machine-marijuana-extracts/

Cannabis and cannabinoid drug development: evaluating botanical versus single molecule approaches.

Publication Cover

“Accumulating evidence suggests that the endocannabinoid system is a promising target for the treatment of a variety of health conditions.

Two paths of cannabinoid drug development have emerged. One approach is focused on developing medications that are directly derived from the cannabis plant. The other utilizes a single molecule approach whereby individual phytocannabinoids or novel cannabinoids with therapeutic potential are identified and synthesized for pharmaceutical development.

This commentary discusses the unique challenges and merits of botanical vs single molecule cannabinoid drug development strategies, highlights how both can be impacted by legalization of cannabis via legislative processes, and also addresses regulatory and public health considerations that are important to consider as cannabinoid medicine advances as a discipline.”

https://www.ncbi.nlm.nih.gov/pubmed/30179534

https://www.tandfonline.com/doi/abs/10.1080/09540261.2018.1474730?journalCode=iirp20

Cannabinoids in cancer treatment: Therapeutic potential and legislation.

Bosnian Journal of Basic Medical Sciences

“The plant Cannabis sativa L. has been used as an herbal remedy for centuries and is the most important source of phytocannabinoids.

The endocannabinoid system (ECS) consists of receptors, endogenous ligands (endocannabinoids) and metabolizing enzymes, and plays an important role in different physiological and pathological processes.

Phytocannabinoids and synthetic cannabinoids can interact with the components of ECS or other cellular pathways and thus affect the development/progression of diseases, including cancer.

In cancer patients, cannabinoids have primarily been used as a part of palliative care to alleviate pain, relieve nausea and stimulate appetite.

In addition, numerous cell culture and animal studies showed antitumor effects of cannabinoids in various cancer types.

Here we reviewed the literature on anticancer effects of plant-derived and synthetic cannabinoids, to better understand their mechanisms of action and role in cancer treatment. We also reviewed the current legislative updates on the use of cannabinoids for medical and therapeutic purposes, primarily in the EU countries.

In vitro and in vivo cancer models show that cannabinoids can effectively modulate tumor growth, however, the antitumor effects appear to be largely dependent on cancer type and drug dose/concentration.

Understanding how cannabinoids are able to regulate essential cellular processes involved in tumorigenesis, such as progression through the cell cycle, cell proliferation and cell death, as well as the interactions between cannabinoids and the immune system, are crucial for improving existing and developing new therapeutic approaches for cancer patients.

The national legislation of the EU Member States defines the legal boundaries of permissible use of cannabinoids for medical and therapeutic purposes, however, these legislative guidelines may not be aligned with the current scientific knowledge.”

Cannabidiol as a suggested candidate for treatment of autism spectrum disorder.

 Progress in Neuro-Psychopharmacology and Biological Psychiatry “Autism Spectrum Disorder (ASD) is characterized by persistent deficits in social communication, restricted and repetitive patterns of behavior, interests, or activities and often intellectual disabilities.

No effective treatment for the core symptoms of ASD is currently available.

There is increasing interest in cannabinoids, especially cannabidiol (CBD), as monotherapy or add-on treatment for the core symptoms and co-morbidities of ASD.

In this review we summarize the available pre-clinical and clinical data regarding the safety and effectiveness of medical cannabis, including CBD, in young ASD patients.

Cannabidiol seems to be a candidate for the treatment of ASD.”

https://www.ncbi.nlm.nih.gov/pubmed/30171992

https://www.sciencedirect.com/science/article/pii/S0278584618304445?via%3Dihub

Acute foot-shock stress decreased seizure susceptibility against pentylenetetrazole-induced seizures in mice: Interaction between endogenous opioids and cannabinoids.

:

“Stressful conditions affect the brain’s neurotransmission and neural pathways that are involved in seizure susceptibility. Stress alters the intensity and/or frequency of seizures.

Although evidence indicates that chronic stress exerts proconvulsant effects and acute stress has anticonvulsant properties, the underlying mechanisms which mediate these effects are not well understood.

In the present study, we assessed the role of endogenous opioids, endocannabinoids, as well as functional interaction between opioid and cannabinoid systems in the anticonvulsant effects of acute foot-shock stress (FSS) against pentylenetetrazole (PTZ)-induced seizures in mice.

CONCLUSIONS:

Opioid and cannabinoid systems are involved in the anticonvulsant effects of acute FSS, and these neurotransmission systems interact functionally in response to acute FSS.”

https://www.ncbi.nlm.nih.gov/pubmed/30170259

https://www.epilepsybehavior.com/article/S1525-5050(17)30777-1/fulltext