An ultra-low dose of tetrahydrocannabinol provides cardioprotection.

“Tetrahydrocannabinol (THC), the major psychoactive component of marijuana, is a cannabinoid agonist that exerts its effects by activating at least two specific receptors (CB1 and CB2) that belong to the seven transmembrane G-protein coupled receptor (GPCR) family.

Both CB1 and CB2 mRNA and proteins are present in the heart.

THC treatment was beneficial against hypoxia in neonatal cardiomyocytes in vitro.

We also observed a neuroprotective effect of an ultra low dose of THC when applied to mice before brain insults.

The present study was aimed to test and characterize the cardioprotective effects of a very low dose of THC…

All protocols of THC administration were found to be beneficial.

CONCLUSION:

A single ultra low dose of THC before ischemia is a safe and effective treatment that reduces myocardial ischemic damage.”

http://www.ncbi.nlm.nih.gov/pubmed/23537701

Delta-9-tetrahydrocannabinol protects cardiac cells from hypoxia via CB2 receptor activation and nitric oxide production.

“Delta-9-tetrahydrocannabinol (THC), the major active component of marijuana, has a beneficial effect on the cardiovascular system during stress conditions…

The present study was designed to investigate the central (CB1) and the peripheral (CB2)cannabinoid receptor expression in neonatal cardiomyoctes and possible function in the cardioprotection of THC from hypoxia.

The antagonist for the CB2, but not CB1 receptor antagonist abolished the protective effect of THC.

In agreement with these results using RT-PCR, it was shown that neonatal cardiac cells express CB2, but not CB1 receptors.

Involvement of NO in the signal transduction pathway activated by THC through CB2 was examined. It was found that THC induces nitric oxide (NO) production by induction of NO synthase (iNOS) via CB2 receptors.

L-NAME (NOS inhibitor, 100 microM) prevented the cardioprotection provided by THC.

Taken together, our findings suggest that THC protects cardiac cells against hypoxia via CB2 receptor activation by induction of NO production.

An NO mechanism occurs also in the classical pre-conditioning process; therefore, THC probably pre-trains the cardiomyocytes to hypoxic conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/16444588

Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury

Heart and Circulatory Physiology

“CANNABINOIDS ARE NATURAL and synthetic compounds structurally or pharmacologically related to the constituents of the plant Cannabis sativa or to the endogenous agonists (endocannabinoids) of the cannabinoid CB1 and CB2 receptors.

Cannabidiol (CBD) is a major cannabinoid constituent of Cannabis.

In contrast to tetrahydrocannabinol, CBD binds very weakly to CB1 and CB2 receptors. Contrary to most cannabinoids, CBD does not induce psychoactive or cognitive effects.

CBD has been shown to have anti-inflammatory properties. CBD (together with tetrahydrocannabinol) has been successfully tested in a few preliminary human trials related to autoimmune diseases…

Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling.

Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts.

Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo.

Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.”

http://ajpheart.physiology.org/content/293/6/H3602

Effect of dietary hempseed intake on cardiac ischemia-reperfusion injury.

Regulatory, Integrative and Comparative Physiology

“Polyunsaturated fatty acids (PUFAs) have significant, cardioprotective effects against ischemia.

Hempseed contains a high proportion of the PUFAs linoleic acid (LA) and alpha-linolenic acid (ALA),

Hearts from rats fed a hempseed-supplemented diet exhibited significantly better postischemic recovery of maximal contractile function and enhanced rates of tension development and relaxation during reperfusion than hearts from the other groups.

Our data demonstrate that dietary hempseed can provide significant cardioprotective effects during postischemic reperfusion. This appears to be due to its highly enriched PUFA content.”  http://www.ncbi.nlm.nih.gov/pubmed/17122327

“Polyunsaturated fatty acids (PUFAs) have received special research attention because of their antiarrhythmic and cardioprotective effects in hearts challenged by an ischemia-reperfusion insult. There are two major types of PUFAs: omega-3 and omega-6. Linoleic acid (LA) and α-linolenic acid (ALA) are common examples of an omega-6 and an omega-3 fatty acid, respectively… We have demonstrated for the first time in this study that dietary hempseed represents an effective, unique method to significantly alter the levels of ALA in the heart. We have also demonstrated for the first time that dietary hempseed will confer beneficial cardioprotective effects in hearts subjected to ischemia-reperfusion challenge.”  http://ajpregu.physiology.org/content/292/3/R1198

[Cardiovascular effects of cannabinoids].

“The psychoactive properties of cannabinoids, the biologically active constituents of the marijuana plant, have long been recognized. Recent research has revealed that cannabinoids elicit not only neurobehavioral, and immunological, but also profound cardiovascular effects.

Similar effects can be elicited by the endogenous ligand arachidonyl ethanolamine (anandamide) and 2-arachidonoyl-glycerol.

The biological effects of cannabinoids are mediated by specific receptors.

Two cannabinoid receptors have been identified so far: CB1-receptors are expressed by different cells of the brain and in peripheral tissues, while CB2-receptors were found almost exclusively in immune cells.

Through the use of a selective CB1 receptor antagonist and CB1 receptor-knockout mice the hypotensive and bradycardic effects of cannabinoids in rodents could be attributed to activation of peripheral CB1 receptors. In hemodynamic studies using the radioactive microsphere technique in anesthetized rats, cannabinoids were found to be potent CB1-receptor dependent vasodilators in the coronary and cerebrovascular beds.

Recent findings implicate the endogenous cannabinoid system in the pathomechanism of haemorrhagic, endotoxic and cardiogenic shock.

Finally, there is evidence that the extreme mesenteric vasodilation, portal hypertension and systemic hypotension present in advanced liver cirrhosis are also mediated by the endocannabinoid system.

These exciting, recent research developments indicate that the endogenous cannabinoid system plays an important role in cardiovascular regulation, and pharmacological manipulation of this system may offer novel therapeutic approaches in a variety of pathological conditions.”

Medical use of cannabis: an addiction medicine perspective.

“The use of cannabis for medical purposes, evident throughout history, has become a topic of increasing interest. Yet on the present medical evidence, cannabis-based treatments will only be appropriate for a small number of people in specific circumstances. Experience with cannabis as a recreational drug, and with use of psychoactive drugs that are prescribed and abused, should inform harm reduction in the context of medical cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/26059881

“A safer alternative: Cannabis substitution as harm reduction.”  http://www.ncbi.nlm.nih.gov/pubmed/25919477

Effects of cannabinoids and their receptors on viral infections.

“Cannabinoids, the active ingredient in marijuana, and their derivatives have received remarkable attention in the last two decades because they can affect tumor growth and metastasis.

There is a large body of evidence from in vivo and in vitro models showing that cannabinoids and their receptors influence the immune system, viral pathogenesis, and viral replication.

The present study reviews current insights into the role of cannabinoids and their receptors on viral infections.

The results reported here indicate that cannabinoids and their receptors have different sequels for viral infection.

Although activation or inhibition of cannabinoid receptors in the majority of viral infections are proper targets for development of safe and effective treatments, caution is required before using pharmaceutical cannabinoids as a treatment agent for patients with viral infections.”

Marijuana kills brain cancer, new study confirms

“The active molecules in cannabis kill brain cancer — another study has revealed.”

“Scientists using an extract of whole-plant marijuana rich in pot’s main psychoactive ingredient THC as well as cannabidiol (CBD) showed “dramatic reductions in tumor volumes” of a type of brain cancer.”  http://blog.sfgate.com/smellthetruth/2014/11/18/marijuana-kills-brain-cancer-new-study-confirms/

“Marijuana kills brain cancer, new study confirms. The active molecules in cannabis kill brain cancer — another study has revealed.” http://blog.seattlepi.com/marijuana/2014/11/18/marijuana-kills-brain-cancer-new-study-confirms/#13130101=0

“Marijuana Kills Brain Cancer Cells. Researchers have found that the THC in marijuana causes brain cancer cells to die in both mice and humans.”  http://www.nbcphiladelphia.com/news/health/Marijuana_Kills_Brain_Cancer_Cells_All__National_.html

“Marijuana Kills Brain Cancer, New Study Confirms” http://cancerguide.byethost8.com/marijuana-kills-brain-cancer-new-study-confirms-sfgate-blog/

http://www.thctotalhealthcare.com/category/brain-cancer/

Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes.

“Cannabis sativa L. is an important medicinal plant.

In order to develop cannabis plant material as a medicinal product quality control and clear chemotaxonomic discrimination between varieties is a necessity.

Therefore in this study 11 cannabis varieties were grown under the same environmental conditions. Chemical analysis of cannabis plant material used a gas chromatography flame ionization detection method that was validated for quantitative analysis of cannabis monoterpenoids, sesquiterpenoids, and cannabinoids. Quantitative data was analyzed using principal component analysis to determine which compounds are most important in discriminating cannabis varieties.

In total 36 compounds were identified and quantified in the 11 varieties. Using principal component analysis each cannabis variety could be chemically discriminated. This methodology is useful for both chemotaxonomic discrimination of cannabis varieties and quality control of plant material.”

http://www.ncbi.nlm.nih.gov/pubmed/21040939

Δ9-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells.

“Immune cells have been shown to express cannabinoid receptors and to produce endogenous ligands. Moreover, activation of cannabinoid receptors on immune cells has been shown to trigger potent immunosuppression.

Despite such studies, the role of cannabinoids in transplantation, specifically to prevent allograft rejection, has not, to our knowledge, been investigated previously. In the current study, we tested the effect of THC on the suppression of HvGD as well as rejection of skin allografts…

Together, our research shows, for the first time to our knowledge, that targeting cannabinoid receptors may provide a novel treatment modality to attenuate HvGD and prevent allograft rejection.”

http://www.ncbi.nlm.nih.gov/pubmed/26034207