Cannabis blunts prostate cancer threat: study – ABC News

“Chemicals in cannabis have been found to stop prostate cancer cells from growing in the laboratory, suggesting marijuana-based medicines could one day help fight the disease, scientists said.

After working initially with human cancer cell lines, Ines Diaz-Laviada and colleagues from the University of Alcala in Madrid also tested one compound on mice and discovered it produced a significant reduction in tumour growth.

Their research, published in the British Journal of Cancer, underlines the growing interest in the medical use of active chemicals called cannabinoids, which are found in marijuana.”

Read more: http://www.abc.net.au/news/2009-08-19/cannabis-blunts-prostate-cancer-threat-study/1396346

Cannabinoid Receptor as a Novel Target for the Treatment of Prostate Cancer

“Because prostate cancer has become the most common cancer diagnosed in men, developing novel targets and mechanism-based agents for its treatment has become a challenging issue. In recent years cannabinoids, the active components of Cannabis sativa Linnaeus (marijuana) and their derivatives have drawn renewed attention because of their diverse pharmacologic activities such as cell growth inhibition, anti-inflammatory effects, and tumor regression . Cannabinoids have been shown to induce apoptosis in gliomas, PC-12 pheochromocytoma, CHP 100 neuroblastoma, and hippocampal neurons in vitro, and most interestingly, regression of C6-cell gliomas in vivo. Further interest in cannabinoid research came from the discovery of specific cannabinoid systems and the cloning of specific cannabinoid receptors. These diversified effects of cannabinoids are now known to be mediated by the activation of specific G protein-coupled receptors that are normally bound by a family of endogenous ligands, the endocannabinoids. Two different cannabinoid receptors have been characterized and cloned from mammalian tissues: the “central” CB1 receptor, and the “peripheral” CB2 receptor.”

“In the present study, we show for the first time that expression levels of both cannabinoid receptors, CB1 and CB2, are higher in human prostate cancer cells than in normal cells. Importantly, we also show that WIN-55,212-2 (CB1/CB2 agonist) treatment with androgen-responsive LNCaP cells results in a dose- and time-dependent inhibition of cell growth with a concomitant induction of apoptosis, decrease in protein and mRNA expression of androgen receptor and prostate-specific antigen (PSA), decrease in secreted PSA levels, protein expression of proliferating cell nuclear antigen (PCNA), and vascular endothelial growth factor (VEGF). We suggest that cannabinoid receptor agonists may be useful in the treatment of human prostate cancer.”

“…non–habit-forming cannabinoid receptor agonists could be developed as novel therapeutic agents for the treatment of prostate cancer.”

“We conclude that cannabinoids should be considered as agents for the management of prostate cancer.”

.http://cancerres.aacrjournals.org/content/65/5/1635.long

Cannabinoid Receptor Agonist-induced Apoptosis of Human Prostate Cancer Cells LNCaP Proceeds through Sustained Activation of ERK1/2 Leading to G1 Cell Cycle Arrest

“Prostate cancer (CaP)2 ranks as the most common noncutaneous malignancy and the second leading cause of cancer-related deaths in American males, with similar trends in many Western countries…The major cause of mortality from this disease is metastasis of hormone refractory cancer cells that fail to respond to hormone ablation therapy. Because surgery and current treatment options have proven to be inadequate in treating and controlling CaP, the search for novel targets and mechanism-based agents for prevention and treatment of this disease has become a priority.”

“In recent years, cannabinoids the active components of Cannabis sativa linnaeus (marijuana) and their derivatives are drawing renewed attention because of their diverse pharmacological activities such as cell growth inhibition, anti-inflammatory effects, and tumor regression. Further interest in cannabinoid research came from the discovery of the cannabinoid system and the cloning of specific cannabinoid receptors. Two cannabinoid receptors have been identified: the “central” CB1 and the “peripheral” CB2 receptor. In a recent study, we have shown that WIN 55,212-2 a mixed CB1/CB2 receptor agonist imparts cell growth inhibitory effects in LNCaP cells via an induction of apoptosis. An important observation of this study was that WIN 55,212-2 treatment did not result in apoptosis of the normal prostate epithelial cell at similar doses.”

“Cannabinoids and their derivatives are drawing considerable attention in the treatment of cancer because of their diverse activities such as cell growth inhibition, anti-inflammatory effects, and tumor regression. Accumulated evidence indicates that cannabinoid receptor(s) could be an important target for the treatment of cancer. We have earlier shown that WIN-55,212-2 induced apoptosis of prostate cancer LNCaP cells is mediated through CB1 and CB2 receptors and suggested that these receptors could be an important targets for the treatment of prostate cancer…”

“Hence, we conclude that cannabinoid receptor agonist should be considered as an effective agent for the treatment of prostate cancer. If our hypothesis is supported by in vivo experiments, the long term implications of our study could be to develop nonhabit-forming cannabinoid agonist (s) for the management of prostate cancer.”

http://www.jbc.org/content/281/51/39480.long

Delta9-tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism.

Abstract

“The effect of delta9-tetrahydrocannabinol (THC), the major psycho-active component of marijuana, in human prostate cancer cells PC-3 was investigated. THC caused apoptosis in a dose-dependent manner. Morphological and biochemical changes induced by THC in prostate PC-3 cells shared the characteristics of an apoptotic phenomenon. First, loss of plasma membrane asymmetry determined by fluorescent anexin V binding. Second, presence of apoptotic bodies and nuclear fragmentation observed by DNA staining with 4′,6-diamino-2-phenylindole (DAPI). Third, presence of typical ‘ladder-patterned’ DNA fragmentation. Central cannabinoid receptor expression was observed in PC-3 cells by immunofluorescence studies. However, several results indicated that the apoptotic effect was cannabinoid receptor-independent, such as lack of an effect of the potent cannabinoid agonist WIN 55,212-2, inability of cannabinoid antagonist AM 251 to prevent cellular death caused by THC and absence of an effect of pertussis toxin pre-treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/10570948

Neuroprotection by Δ9-Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity

“These results provide evidence that the cannabinoid system can serve to protect the brain against neurodegeneration.”

“In summary, we have shown that in an in vivo model of neurodegeneration Δ9-THC reduces neuronal damage via a CB1-receptor-mediated mechanism. This holds in both the acute and late phase after induction of excitotoxicity. Δ9-THC inhibits astrogliosis via a non-CB1-receptor-controlled mechanism. The results strengthen the concept that the endogenous cannabinoid system may serve to establish a defense system for the brain. This system may be functional in several neurodegenerative diseases in which excitotoxicity is thought to play a role, such as amyotrophic lateral sclerosis, Huntington’s and Parkinson’s diseases, and also in acute neuronal damage as found in stroke and traumatic brain injury. It is conceivable that the endogenous cannabinoid system can be exploited for therapeutic interventions in these types of primarily incurable diseases.”

http://www.jneurosci.org/content/21/17/6475.long

Neuroprotective antioxidants from marijuana.

“Cannabidiol and other cannabinoids were examined as neuroprotectants in rat cortical neuron cultures exposed to toxic levels of the neurotransmitter, glutamate.

The psychotropic cannabinoid receptor agonist delta 9-tetrahydrocannabinol (THC) and cannabidiol, (a non-psychoactive constituent of marijuana), both reduced NMDA, AMPA and kainate receptor mediated neurotoxicities.

Neuroprotection was not affected by cannabinoid receptor antagonist, indicating a (cannabinoid) receptor-independent mechanism of action. Glutamate toxicity can be reduced by antioxidants. Using cyclic voltametry and a fenton reaction based system,

it was demonstrated that Cannabidiol, THC and other cannabinoids are potent antioxidants. As evidence that cannabinoids can act as an antioxidants in neuronal cultures,

 cannabidiol was demonstrated to reduce hydroperoxide toxicity in neurons.

In a head to head trial of the abilities of various antioxidants to prevent glutamate toxicity, cannabidiol was superior to both alpha-tocopherol and ascorbate in protective capacity.

Recent preliminary studies in a rat model of focal cerebral ischemia suggest that cannabidiol may be at least as effective in vivo as seen in these in vitro studies.”

http://www.ncbi.nlm.nih.gov/pubmed/10863546

Baby Recovered From Brain Tumor With Daily Dose of Marijuana

“Anyone who has ever known and loved someone using chemotherapy knows just what a toxic cocktail those drugs truly are. So when faced with the idea that an 8-month-old baby could go through those horrific  side effects or try something else, namely marijuana, to treat a brain tumor, my money is on the “something else” every time.”

“This is exactly the question parents of an 8-month-old baby were faced with recently when they opted to treat their baby with cannabinoid oil (a form of marijuana) on the baby’s pacifier twice a day. Within two months the tumor had shrunk so dramatically that the baby’s doctor’s did not have to use chemo. Amazing, no?”

“The long term effects of marijuana on a baby are probably unknown, but the long term effects of chemotherapy may be just as harmful, if not even worse. At least cannabis can be grown safely and organically and given in as natural a state as possible.”

“Ordinarily I would frown on parents giving any kind of substance to a baby, but a baby with a brain tumor is another kind of story. In this case, the cannabis helped. Maybe this is the beginning of less invasive treatment methods with fewer side effects. Wouldn’t that be a miracle for ALL children?”

“Would you give your baby cannabinoid oil?”

Read more: http://thestir.cafemom.com/baby/147477/baby_recovered_from_brain_tumor?fb_action_ids=471912052845441&fb_action_types=og.recommends&fb_ref=post_top&fb_source=aggregation&fb_aggregation_id=288381481237582

Cannabinoids As Cancer Hope

NORML - Working to reform marijuana laws

by Paul Armentano
Senior Policy Analyst
NORML | NORML Foundation

““Cannabinoids possess … anticancer activity [and may] possibly represent a new class of anti-cancer drugs that retard cancer growth, inhibit angiogenesis (the formation of new blood vessels) and the metastatic spreading of cancer cells.” So concludes a comprehensive review published in the October 2005 issue of the scientific journal Mini-Reviews in Medicinal Chemistry.

Not familiar with the emerging body of research touting cannabis’ ability to stave the spread of certain types of cancers? You’re not alone.

For over 30 years, US politicians and bureaucrats have systematically turned a blind eye to scientific research indicating that marijuana may play a role in cancer prevention — a finding that was first documented in 1974. That year, a research team at the Medical College of Virginia (acting at the behest of the federal government) discovered that cannabis inhibited malignant tumor cell growth in culture and in mice. According to the study’s results, reported nationally in an Aug. 18, 1974, Washington Post newspaper feature, administration of marijuana’s primary cannabinoid THC, “slowed the growth of lung cancers, breast cancers and a virus-induced leukemia in laboratory mice, and prolonged their lives by as much as 36 percent.”

Despite these favorable preclinical findings, US government officials dismissed the study (which was eventually published in the Journal of the National Cancer Institute in 1975), and refused to fund any follow-up research until conducting a similar — though secret — clinical trial in the mid-1990s. That study, conducted by the US National Toxicology Program to the tune of $2 million concluded that mice and rats administered high doses of THC over long periods experienced greater protection against malignant tumors than untreated controls.

Rather than publicize their findings, government researchers once again shelved the results, which only came to light after a draft copy of its findings were leaked in 1997 to a medical journal, which in turn forwarded the story to the national media.

Nevertheless, in the decade since the completion of the National Toxicology trial, the U.S. government has yet to encourage or fund additional, follow up studies examining the cannabinoids’ potential to protect against the spread cancerous tumors.

Fortunately, scientists overseas have generously picked up where US researchers so abruptly left off. In 1998, a research team at Madrid’s Complutense University discovered that THC can selectively induce apoptosis (program cell death) in brain tumor cells without negatively impacting the surrounding healthy cells. Then in 2000, they reported in the journal Nature Medicine that injections of synthetic THC eradicated malignant gliomas (brain tumors) in one-third of treated rats, and prolonged life in another third by six weeks.

In 2003, researchers at the University of Milan in Naples, Italy, reported that non-psychoactive compounds in marijuana inhibited the growth of glioma cells in a dose dependent manner and selectively targeted and killed malignant cancer cells.

The following year, researchers reported in the journal of the American Association for Cancer Research that marijuana’s constituents inhibited the spread of brain cancer in human tumor biopsies. In a related development, a research team from the University of South Florida further noted that THC can also selectively inhibit the activation and replication of gamma herpes viruses. The viruses, which can lie dormant for years within white blood cells before becoming active and spreading to other cells, are thought to increase one’s chances of developing cancers such as Karposis Sarcoma, Burkitts lymphoma, and Hodgkins disease.

More recently, investigators published pre-clinical findings demonstrating that cannabinoids may play a role in inhibiting cell growth of colectoral cancer, skin carcinoma, breast cancer, and prostate cancer, among other conditions. When investigators compared the efficacy of natural cannabinoids to that of a synthetic agonist, THC proved far more beneficial – selectively decreasing the proliferation of malignant cells and inducing apoptosis more rapidly than its synthetic alternative while simultaneously leaving healthy cells unscathed.

Nevertheless, US politicians have been little swayed by these results, and remain steadfastly opposed to the notion of sponsoring – or even acknowledging – this growing body clinical research, preferring instead to promote the unfounded notion that cannabis use causes cancer. Until this bias changes, expect the bulk of research investigating the use of cannabinoids as anticancer agents to remain overseas and, regrettably, overlooked in the public discourse.”

http://norml.org/component/zoo/category/cannabinoids-as-cancer-hope

The endocannabinoid system as a target for novel anxiolytic and antidepressant drugs.

“Observational studies in humans suggest that exposure to marijuana and other cannabis-derived drugs produces a wide range of subjective effects on mood tone and emotionality. These observations have their counterpart in animal studies, showing that cannabinoid agonists strongly affect emotional reactivity in directions that vary depending on dose and context. Based on these evidence, the activation of central CB(1) receptor has emerged as potential target for the development of antianxiety and antidepressant therapies…”

http://www.ncbi.nlm.nih.gov/pubmed/19607961

 

Cannabis Oil Pills Helped Child Go Into Cancer Remission, Mom Says – ABCNews

“When 7-year-old Mykayla Comstock was diagnosed with leukemia in July, it was less than three days before her mother filed Oregon medical marijuana paperwork so the child could take lime-flavored capsules filled with cannabis oil.

The decision to give Mykayla the capsules came naturally to Erin Purchase, MyKayla’s mother, who believes marijuana has healing power, but doctors aren’t so sure it’s a good idea.

“The first doctor was not for it at all,” Purchase told ABCNews.com. “She was rude and she told us it was inappropriate. “Basically she blew up at us and told us to transfer to another facility.”

They found a new doctor, who knows that Mykayla takes about a gram of cannabis oil a day — half in the morning and half at night — but he doesn’t talk about it with them.

“This is our daughter,” Purchase, 25, said. “If they don’t agree with our personal choices, we’d rather they not say anything at all.””

.””At first, Mykayla wasn’t responding well to her treatment, and doctors said she might need a bone marrow transplant. Then she started taking the cannabis oil pills. her mother said. By early August, Mykayla was in remission and the transplant was no longer necessary.”

“I don’t think it’s just a coincidence,” Purchase said. “I credit it with helping — at least helping — her ridding the cancer from her body.””

Read more: http://abcnews.go.com/Health/medical-marijuana-year-sparks-controversy/story?id=17814636

https://www.facebook.com/BraveMyKayla

“Like some cancer patients in states where it’s allowed, Mykayla Comstock uses cannabis as part of her treatment. Comstock is 7-years old. Her mother, a long time advocate for medical use of the illegal drug, has been giving her a gram of oral cannabis oil every day. Despite the fact that medical marijuana is legal in Oregon, where Comstock lives, the idea of giving it to a child still gives pause to many adults who associate the drug with recreational use that breaks the law.

As reported by ABC News, Mykayla was diagnosed with acute lymphoblastic leukemia in July. Against her doctor’s wishes, her mother, Erin Purchase, began giving her lime-flavored capsules filled with cannabis oil after she had a poor response to her initial chemotherapy treatment.

Her doctors suggested a bone marrow transplant, but while she was taking the medical marijuana, she went into remission in August. She continues to rely on cannabis to ease pain and nausea and her mother plans to continue giving her the drug during the additional two to three years of chemotherapy she still faces.

Purchase believes that certain components in marijuana, which show anti-cancer activity in many early studies, helped spark the remission. Mykayla’s current doctor knows she takes the capsules, but doesn’t discuss the marijuana as part of her medical therapy.”  http://www.cnn.com/2012/11/30/health/medical-marijuana-children-time/

http://www.thctotalhealthcare.com/category/leukemia/