“Uterus transplantation is a complex surgical procedure. Uterine ischemia/reperfusion (IR) damage occurring in this process may cause loss of function in the uterus. Cell damage must be prevented for a healthy uterine function and successful transplantation.
Cannabinoids, with their increasing clinical use, are substances with strong anti-inflammatory and antioxidative effects and have a role in immune system regulation. However, their efficacy in uterine IR damage is still unknown.
This study provides information on the potential applications cannabinoids agonist JWH-133 in uterine IR damage and, hence, in the transplant process.
Results: In the uterine IR group, NF-κB expression and MDA levels were detected at high levels. Histopathological examinations and TUNEL staining revealed extensive cell damage. On the other hand, in groups treated with JWH-133, dose-dependent NF-κB expression and MDA levels decreased (p < 0.05). Depending on the dose, the rate of surviving cells increased in TUNEL staining results.
Conclusion: The results showed that JWH-133 was effective in reducing uterine IR damage. Cannabinoids may be a new alternative that may be used in the transplantation process in the future.”
“This article provides a concise overview of how cannabinoids and the endocannabinoid system (ECS) have significant implications for the prevention and treatment of metabolic syndrome (MetS) and for the treatment of cardiovascular disorders, including cardiac fibrosis.
“The burden of chronic pain has affected many individuals leading to distress and discomfort, alongside numerous side effects with conventional therapeutic approaches.
“The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task.
“∆ 9 -Tetrahydrocannabinol (∆9 -THC), the active phytocannabinoid in cannabis, is virtually an adjunct to the endogenous endocannabinoid signaling system.
“While activation of cannabinoid (CB2) receptors has been shown to be neuroprotective, no studies have examined whether this neuroprotection is directed at cerebral arterioles and no studies have examined whether activation of CB2 receptors can rescue cerebrovascular dysfunction during a chronic disease state such as type 1 diabetes (T1D).