Hypoxia-induced inhibition of the endocannabinoid system in glioblastoma cells.

Journal Cover

“The endocannabinoid system plays an important role in the regulation of physiological and pathological conditions, including inflammation and cancer.

Hypoxia is a fundamental phenomenon for the establishment and maintenance of the microenvironments in various physiological and pathological conditions. However, the influence of hypoxia on the endocannabinoid system is not fully understood. In the present study, we investigated the effects of hypoxia on the endocannabinoid system in malignant brain tumors.

Although cannabinoid receptor (CB) engagement induces cell death in U-87 MG cells in normoxic conditions, CB agonist-induced death was attenuated in hypoxic conditions. These results suggest that hypoxia modifies the endocannabinoid system in glioblastoma cells.

Hypoxia-induced inhibition of the endocannabinoid system may aid the development of glioblastoma.”

https://www.ncbi.nlm.nih.gov/pubmed/29130103

Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC.

European Neuropsychopharmacology Home

“Of central importance was the novel finding that THC can be detected in serum and brain after administration of CBD alone which, if confirmed in humans and given the increasing medical use of CBD-only products, might have important legal and forensic ramifications.” https://www.ncbi.nlm.nih.gov/pubmed/29129557  http://www.europeanneuropsychopharmacology.com/article/S0924-977X(17)30983-5/fulltext

ACPA and JWH-133 modulate the vascular tone of superior mesenteric arteries through cannabinoid receptors, BKCa channels, and nitric oxide dependent mechanisms.

Pharmacological Reports

“Some cannabinoids, a family of compounds derived from Cannabis sativa (marijuana), have previously shown vasodilator effects in several studies, a feature that makes them suitable for the generation of a potential treatment for hypertension.

The mechanism underlying this vasodilator effect in arteries is still controversial. In this report, we explored how the synthetic cannabinoids ACPA (CB1-selective agonist) and JWH-133 (CB2-selective agonist) regulate the vascular tone of rat superior mesenteric arteries.

CB1 and CB2 receptor activation in superior mesenteric artery causes vasorelaxation by mechanisms involving BKCachannels and NO release.”

https://www.ncbi.nlm.nih.gov/pubmed/29128791

http://www.sciencedirect.com/science/article/pii/S1734114017300361?via%3Dihub

Pharmacotherapy of Apnea by Cannabimimetic Enhancement, the PACE Clinical Trial: Effects of Dronabinol in Obstructive Sleep Apnea.

Oxford University Press

“There remains an important and unmet need for fully effective and acceptable treatments in obstructive sleep apnea (OSA). At present, there are no approved drug treatments. Dronabinol has shown promise for OSA pharmacotherapy in a small dose-escalation pilot study.

Here, we present initial findings of the Phase II PACE (Pharmacotherapy of Apnea by Cannabimimetic Enhancement) trial, a fully-blinded parallel groups, placebo-controlled randomized trial of dronabinol in patients with moderate or severe OSA.

These findings support the therapeutic potential of cannabinoids in patients with OSA. In comparison to placebo, dronabinol was associated with lower AHI, improved subjective sleepiness and greater overall treatment satisfaction. Larger scale clinical trials will be necessary to clarify the best potential approach(es) to cannabinoid therapy in OSA”   https://www.ncbi.nlm.nih.gov/pubmed/29121334

“These findings support the therapeutic potential of cannabinoids in patients with obstructive sleep apnea (OSA).” https://academic.oup.com/sleep/article-abstract/doi/10.1093/sleep/zsx184/4600041?redirectedFrom=fulltext

Cannabinoid May Be First Drug for Sleep Apnea” https://www.medscape.com/viewarticle/891821

Anti-migraine effect of ∆9-tetrahydrocannabinol in the female rat.

European Journal of Pharmacology

“Current anti-migraine treatments have limited efficacy and many side effects. Although anecdotal evidence suggests that marijuana is useful for migraine, this hypothesis has not been tested in a controlled experiment. Thus, the present study tested whether administration of ∆9-tetrahydrocannabinol (THC) produces anti-migraine effects in the female rat.

These data suggest that: 1) THC reduces migraine-like pain when administered at the right dose (0.32mg/kg) and time (immediately after AITC); 2) THC’s anti-migraine effect is mediated by CB1 receptors; and 3) Wheel running is an effective method to assess migraine treatments because only treatments producing antinociception without disruptive side effects will restore normal activity.

These findings support anecdotal evidence for the use of cannabinoids as a treatment for migraine in humans and implicate the CB1 receptor as a therapeutic target for migraine.”

https://www.ncbi.nlm.nih.gov/pubmed/29111112

http://www.sciencedirect.com/science/article/pii/S0014299917307239?via%3Dihub

Characterization of endocannabinoids and related acylethanolamides in the synovial fluid of dogs with osteoarthritis: a pilot study.

 Image result for bmc veterinary research

“Cannabis-based drugs have been shown to be effective in inflammatory diseases.

A number of endocannabinoids including N- arachidonoylethanolamide (anandamide, AEA) and 2-arachidonyl glycerol (2-AG) with activity at the cannabinoidreceptors (CBR) CBR1 and CBR2, have been identified. Other structurally related endogenous fatty acid compounds such as oleoylethanolamide (OEA) and palmitoyl ethanolamide (PEA) have been identified in biological tissues.

These compounds do not bind to CBR but might be involved in facilitating the actions of directly acting endocannabinoids and thus are commonly termed “entourage” compounds due to their ability to modulate the endocannabinoid system.

The aim of this study was to evaluate the presence of endocannabinoids and entourage compounds in the synovial fluid of dogs with osteoarthritis subjected to arthrotomy of the knee joint. Cytokines and cytology were studied as well.

AEA, 2-AG, OEA and PEA were all present in the synovial fluid of arthritic knees and in the contralateral joints; in addition, a significant increase of OEA and 2AG levels were noted in SF from OA knees when compared to the contralateral joints.

The identification and quantification of endocannabinoids and entourage compounds levels in synovial fluids from dogs with OA of the knee is reported for the first time. Our data are instrumental for future studies involving a greater number of dogs. Cannabinoids represent an emerging and innovative pharmacological tool for the treatment of OA and further studies are warranted to evaluate the effectiveness of cannabinoids in veterinary medicine.”

https://www.ncbi.nlm.nih.gov/pubmed/29110674

“The ECS can be exploited as a potential therapeutic option for OA. We have demonstrated the presence of AEA, 2-AG, OEA and PEA in the SF of dogs with OA. Our data open the avenue to future studies involving a higher number of dogs and aimed at defining the role played by these compounds in OA of the dogs. Both plant-derived and synthetic agonists of CBRs represent an emerging and innovative pharmacological tool for the treatment of OA. ” https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-017-1245-7

Radioligands for Positron Emission Tomography Imaging of Cannabinoid type 2 Receptor.

Journal of Labelled Compounds and Radiopharmaceuticals

“The cannabinoid type 2 (CB2) receptor is an immunomodulatory receptor mainly expressed in peripheral cells and organs of the immune system. The expression level of CB2 in the central nervous system under physiological conditions is negligible, however under neuroinflammatory conditions an upregulation of CB2 protein or mRNA mainly co-localized with activated microglial cells has been reported.

Consequently, CB2 agonists have been confirmed to play a role in neuroprotective and anti-inflammatory processes.

A suitable PET radioligand for imaging CB2 would provide an invaluable research tool to explore the role of CB2 receptor expression in inflammatory disorders. In this review, we provide a summary of so far published CB2 radioligands as well as their in vitro and in vivo binding characteristics.”

https://www.ncbi.nlm.nih.gov/pubmed/29110331

http://onlinelibrary.wiley.com/doi/10.1002/jlcr.3579/abstract

Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation.

 

 

“Cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC) have well documented immunomodulatory effects in vitro, but not following oral administration in humans. Here we show that oral co-administration of cannabinoids with lipids can substantially increase their intestinal lymphatic transport in rats. Moreover, immune cells from MS patients were more susceptible to the immunosuppressive effects of cannabinoids than those from healthy volunteers or cancer patients. Therefore, administering cannabinoids with a high-fat meal or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders.”  https://www.ncbi.nlm.nih.gov/pubmed/29109461

“Cannabis sativa has a very long history of medical use. In summary, it has been demonstrated in this work that oral co-administration of cannabis or cannabis-based medicines with lipids results in extremely high levels of lipophilic cannabinoids in the intestinal lymphatic system and prominent immunomodulatory effects. Therefore, administering cannabinoids with a high-fat meal, as cannabis-containing food, or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders.”  https://www.nature.com/articles/s41598-017-15026-z

Increased expression of type 1 cannabinoid (CB1) receptor among patients with rotator cuff lesions and shoulder stiffness.

:Journal of Shoulder and Elbow Surgery Home

“Shoulder stiffness is a disease manifested by pain, limited range of motion, and functional disability. The inflammatory and fibrosis processes play a substantial role in the pathogenesis of shoulder stiffness. The CB1 receptor has been recognized to mediate the processes of pathologic fibrosis.

This study investigated the role of the CB1 pathway in pathogenesis of rotator cuff lesions with shoulder stiffness.

The CB1 pathway is involved in the pathogenesis of shoulder stiffness. It may be a promising target for the treatment of rotator cuff lesions with shoulder stiffness.”

https://www.ncbi.nlm.nih.gov/pubmed/29108858

http://www.jshoulderelbow.org/article/S1058-2746(17)30589-X/fulltext

Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol.

Neurobiology of Aging

“This study was designed to test our hypothesis that an ultra-low dose of delta-9 tetrahydrocannabinol (THC) reverses age-dependent cognitive impairments in old mice and to examine the possible biological mechanisms that underlie this behavioral effect. These findings suggest that extremely low doses of THC that are devoid of any psychotropic effect and do not induce desensitization may provide a safe and effective treatment for cognitive decline in aging humans.”  https://www.ncbi.nlm.nih.gov/pubmed/29107185

“Cognitive decline is an integral aspect of aging. The idea that age-related cognitive decline can be reversed and that the old brain can be revitalized is not new. It has been previously suggested that the endocannabinoid system is part of an antiaging homeostatic defense system.  In previous studies, we have shown that ultra-low doses of tetrahydrocannabinol (THC, the main psychotropic ingredient in cannabis) protected young mice from cognitive impairments that were evoked by various insults. In the present study, we tested our hypothesis that a single ultra-low dose of THC can reverse age-dependent cognitive decline in mice. Here, we show that a single extremely low dose of THC devoid of any psychotropic activity can trigger an endogenous compensatory mechanism that improves cognitive functioning in old mice and that this effect lasts for at least several weeks. Since THC in high doses (dronabinol, 1–10 mg) is already approved for medical treatments in humans, and since its safety profile is well characterized, we believe that the initiation of clinical trials with ultra-low doses of THC designed to reverse cognitive decline in elderly patients should be straightforward.”  http://www.sciencedirect.com/science/article/pii/S0197458017303214

“Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol. These findings suggest that extremely low doses of THC that are devoid of any psychotropic effect and do not induce desensitization may provide a safe and effective treatment for cognitive decline in aging humans.”   http://www.neurobiologyofaging.org/article/S0197-4580(17)30321-4/fulltext

Neurobiology of Aging Home