Hemopressin peptides as modulators of the endocannabinoid system and their potential applications as therapeutic tools.

Image result for Protein and Peptide Letters

“The endocannabinoid system is activated by the binding of natural arachidonic acid derivatives (endogenous cannabinoids or endocannabinoids) as lipophilic messengers to cannabinoid receptors CB1 and CB2.

The endocannabinoid system comprises also many hydrolytic enzymes responsible for the endocannabinoids cleavage, such as FAAH and MAGL. These two enzymes are possible therapeutic targets for the development of new drugs as indirect cannabinoid agonists.

Recently a new family of endocannabinoid modulators was discovered; the lead of this family is the nonapeptide hemopressin produced from enzymatic cleavage of the α-chain of hemoglobin and acting as negative allosteric modulator of CB1. Hemopressin shows several physiological effects, e.g. antinociception, hypophagy, and hypotension.  It is still matter of debate whether this peptide, isolated from the brain of rats is a real neuromodulator of the endocannabinoid system.

Recent evidence indicates that hemopressin could be a by-product formed by chemical degradation of a longer peptide RVD-hemopressin during the extraction from the brain homolysate. Indeed, RVD-hemopressin is more active than hemopressin in certain biological tests and may bind to the same subsite as Rimonabant, which is an inverse agonist for the CB1 receptor and a μ-opioid receptor antagonist.

These findings have stimulated several studies to verify this hypothesis and to evaluate possible therapeutic applications of hemopressin, its peptidic derivatives and synthetic analogues, opening new perspectives to the development of novel cannabinoid drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/27748182

Association of Anandamide with altered Binocular Depth Inversion Illusion in Schizophrenia.

 

Image result for World J Biol Psychiatry.

“Binocular depth inversion illusion (BDII) represents an illusion of visual perception that involves higher-order visual and cognitive processes. Its impairment has been linked to psychotic conditions and identified as a marker for at risk mental states.

The endogenous cannabinoid system (ECS) is involved in various neurophysiological processes. One of its key components, anandamide, is involved in the pathophysiology of schizophrenia.

Little is known about its impact on BDII alterations. Therefore, we explored associations between BDII and anandamide levels.

Conclusions These findings support the hypothesis of an involvement of anandamide in cognitive processes impaired in schizophrenia and are consistent with a protective effect of elevated anandamide levels herein.”

[The endocannabinoid system and bone].

Image result for pubmed

“Recent studies suggest an important role for the skeletal endocannabinoid system in the regulation of bone mass in both physiological and pathological conditions. Both major endocannabinoids (anandamid and 2-arachidonoylglycerol), endocannabinoid receptors – CB1-receptor (CB1R) a CB2-receptor (CB2R) and the endocannabinoid metabolizing enzymes are present or expressed in osteoblasts and osteoclasts. Previous studies identified multiple risk and protective variants of CNR2 gene dealing with the relationship to bone density and/or osteoporosis. Selective CB1R/ CB2R-inverse agonists/antagonists and CB2R-inverse agonists/antagonists are candidates for prevention of bone mass loss and combined antiresorptive and anabolic therapy for osteoporosis.”

https://www.ncbi.nlm.nih.gov/pubmed/27734700

Cannabinoids Inhibit Glioma Cell Invasion by Down-regulating Matrix Metalloproteinase-2 Expression

Cancer Research: 68 (6)

“Cannabinoids, the active components of Cannabis sativa L. and their derivatives, inhibit tumor growth in laboratory animals by inducing apoptosis of tumor cells and impairing tumor angiogenesis.

It has also been reported that these compounds inhibit tumor cell spreading.

Here, we evaluated the effect of cannabinoids on matrix metalloproteinase (MMP) expression and its effect on tumor cell invasion.

Local administration of Δ9-tetrahydrocannabinol (THC), the major active ingredient of cannabis, down-regulated MMP-2 expression in gliomas generated in mice.

This cannabinoid-induced inhibition of MMP-2 expression in gliomas.

As MMP-2 up-regulation is associated with high progression and poor prognosis of gliomas and many other tumors, MMP-2 down-regulation constitutes a new hallmark of cannabinoid antitumoral activity.

As selective CB2 receptor activation to mice has been shown to inhibit the growth and angiogenesis of gliomas, skin carcinomas and melanomas, our observations further support the possibility of finding cannabinoid-based antitumoral strategies devoid of nondesired psychotropic side effects.”

http://cancerres.aacrjournals.org/content/68/6/1945

 

Phytocannabinoids: a unified critical inventory.

Image result for natural product reports

“Cannabis sativa L. is a prolific, but not exclusive, producer of a diverse group of isoprenylated resorcinyl polyketides collectively known as phytocannabinoids.

The modular nature of the pathways that merge into the phytocannabinoid chemotype translates in differences in the nature of the resorcinyl side-chain and the degree of oligomerization of the isoprenyl residue, making the definition of phytocannabinoid elusive from a structural standpoint.

A biogenetic definition is therefore proposed, splitting the phytocannabinoid chemotype into an alkyl- and a β-aralklyl version, and discussing the relationships between phytocannabinoids from different sources (higher plants, liverworts, fungi).

The startling diversity of cannabis phytocannabinoids might be, at least in part, the result of non-enzymatic transformations induced by heat, light, and atmospheric oxygen on a limited set of major constituents (CBG, CBD, Δ9-THC and CBC and their corresponding acidic versions), whose degradation is detailed to emphasize this possibility.

The diversity of metabotropic (cannabinoid receptors), ionotropic (thermos-TRPs), and transcription factors (PPARs) targeted by phytocannabinoids is discussed. The integrated inventory of these compounds and their biological macromolecular end-points highlights the opportunities that phytocannabinoids offer to access desirable drug-like space beyond the one associated to the narcotic target CB1.”

Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke.

pharmaceuticals-logo

“Cannabis contains the psychoactive component delta⁸-tetrahydrocannabinol (delta⁸-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol.

It is well-known that delta⁸-THC and other cannabinoid CB₁ receptor agonists are neuroprotective during global and focal ischemic injury.

Additionally, delta⁸-THC also mediates psychological effects through the activation of the CB₁ receptor in the central nervous system.

In addition to the CB₁ receptor agonists, cannabis also contains therapeutically active components which are CB₁ receptor independent.

Of the CB₁ receptor-independent cannabis, the most important is CBD.

In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD.

In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis.

The cerebroprotective action of CBD is CB₁ receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance.

In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke.”

https://www.ncbi.nlm.nih.gov/pubmed/27713349

Mechanisms of Broad-Spectrum Antiemetic Efficacy of Cannabinoids against Chemotherapy-Induced Acute and Delayed Vomiting.

pharmaceuticals-logo

“Chemotherapy-induced nausea and vomiting (CINV) is a complex pathophysiological condition and consists of two phases.

The conventional CINV neurotransmitter hypothesis suggests that the immediate phase is mainly due to release of serotonin (5-HT) from the enterochromaffin cells in the gastrointestinal tract (GIT), while the delayed phase is a consequence of release of substance P (SP) in the brainstem. However, more recent findings argue against this simplistic neurotransmitter and anatomical view of CINV.

Revision of the hypothesis advocates a more complex, differential and overlapping involvement of several emetic neurotransmitters/modulators (e.g. dopamine, serotonin, substance P, prostaglandins and related arachidonic acid derived metabolites) in both phases of emesis occurring concomitantly in the brainstem and in the GIT enteric nervous system (ENS).

No single antiemetic is currently available to completely prevent both phases of CINV.

The standard antiemetic regimens include a 5-HT₃ antagonist plus dexamethasone for the prevention of acute emetic phase, combined with an NK1 receptor antagonist (e.g. aprepitant) for the delayed phase. Although NK1 antagonists behave in animals as broad-spectrum antiemetics against different emetogens including cisplatin-induced acute and delayed vomiting, by themselves they are not very effective against CINV in cancer patients.

Cannabinoids such as D⁸-THC also behave as broad-spectrum antiemetics against diverse emetic stimuli as well as being effective against both phases of CINV in animals and patients.

Potential side effects may limit the clinical utility of direct-acting cannabinoid agonists which could be avoided by the use of corresponding indirect-acting agonists.

Cannabinoids (both phyto-derived and synthetic) behave as agonist antiemetics via the activation of cannabinoid CB₁ receptors in both the brainstem and the ENS emetic loci.

An endocannabinoid antiemetic tone may exist since inverse CB₁ agonists (but not the corresponding silent antagonists) cause nausea and vomiting.”

https://www.ncbi.nlm.nih.gov/pubmed/27713384

Dendritic Cell Regulation by Cannabinoid-Based Drugs.

pharmaceuticals-logo

“Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered.

Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases.

Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function.

Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders.

At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC). Dendritic cells are recognized for their critical role in initiating and maintaining immune responses.

Therefore, DC are potential targets for cannabinoid-mediated modulation.

Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes.”

https://www.ncbi.nlm.nih.gov/pubmed/27713374

Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3

Cover image

“Spinocerebellar ataxia type-3 (SCA-3) is a rare disease but it is the most frequent type within the autosomal dominant inherited ataxias. The disease lacks an effective treatment to alleviate major symptoms and to modify disease progression.

Our recent findings that endocannabinoid receptors and enzymes are significantly altered in the post-mortemcerebellum of patients affected by autosomal-dominant hereditary ataxias suggest that targeting the endocannabinoid signaling system may be a promising therapeutic option.

Our goal was to investigate the status of the endocannabinoid signaling system in a transgenic mouse model of SCA-3, in the two CNS structures most affected in this disease –cerebellum and brainstem-.

These animals exhibited progressive motor incoordination, imbalance, abnormal gait, muscle weakness, and dystonia, in parallel to reduced in vivobrain glucose metabolism, deterioration of specific neuron subsets located in the dentate nucleus and pontine nuclei, small changes in microglial morphology, and reduction in glial glutamate transporters.

Concerning the endocannabinoid signaling, our data indicated no changes in CB2 receptors. By contrast, CB1 receptors increased in the Purkinje cell layer, in particular in terminals of basket cells, but they were reduced in the dentate nucleus.

We also measured the levels of endocannabinoid lipids and found reductions in anandamide and oleanolamideoyleth in the brainstem. These changes correlated with an increase in the FAAH enzyme in the brainstem, which also occurred in some cerebellar areas, whereas other endocannabinoid-related enzymes were not altered.

Collectively, our results in SCA-3 mutant mice confirm a possible dysregulation in the endocannabinoid system in the most important brain structures affected in this type of ataxia, suggesting that a pharmacological manipulation addressed to correct these changes could be a promising option in SCA-3.”

http://www.sciencedirect.com/science/article/pii/S0306452216305012

From Fertilisation to Implantation in Mammalian Pregnancy-Modulation of Early Human Reproduction by the Endocannabinoid System.

 

pharmaceuticals-logo

“There is an increasing recognition that the endocannabinoid system is the crucial cytokine-hormone system regulating early human pregnancy. The synchronous development of the fertilized embryo and the endometrium to ensure timely implantation has been shown to be one of the pivotal steps to successful implantation. This development is thought to be regulated by a finely balanced relationship between various components of the endocannabinoid system in the endometrium, the embryo and the Fallopian tube. In addition, this system has also been shown to be involved in the regulation of the development and maturation of the gametes prior to fertilization. In this review, we will examine the evidence from animal and human studies to support the role of the endocannabinoid system in gametogenesis, fertilization, implantation, early pregnancy maintenance, and in immunomodulation of pregnancy. We will discuss the role of the cannabinoid receptors and the enzymes involved in the synthesis and degradation of the key endocannabinoid ligands (e.g., anandamide and 2-arachinoylglycerol) in early reproduction.”

https://www.ncbi.nlm.nih.gov/pubmed/27713383