Effects of JWH015 in cytokine secretion in primary human keratinocytes and fibroblasts and its suitability for topical/transdermal delivery.

Image result for Mol Pain.

“JWH015 is a cannabinoid (CB) receptor type 2 agonist that produces immunomodulatory effects. Since skin cells play a key role in inflammatory conditions and tissue repair, we investigated the ability of JWH015 to promote an anti-inflammatory and pro-wound healing phenotype in human primary skin cells.

The expression of CB1 and CB2 receptors (mRNA) and the production of pro- and anti-inflammatory factors enhanced in keratinocytes and fibroblasts following lipopolysaccharide stimulation. JWH015 reduced the concentration of major pro-inflammatory factors (IL-6 and MCP-1) and increased the concentration of a major anti-inflammatory factor (TGF-β) in lipopolysaccharide-stimulated cells.

JWH015 induced a faster scratch gap closure. These JWH015’seffects were mainly modulated through both CB1 and CB2 receptors. Topically administered JWH015 was mostly retained in the skin and displayed a sustained and low level of transdermal permeation.

Our findings suggest that targeting keratinocytes and fibroblasts with cannabinoid drugs could represent a therapeutic strategy to resolve peripheral inflammation and promote tissue repair.”

Overactivation of the endocannabinoid system alters the anti-lipolytic action of insulin in mouse adipose tissue.

Image result for Am J Physiol Endocrinol Metab

“Evidence has accumulated that obesity-related metabolic dysregulation is associated with overactivation of the endocannabinoid system (ECS), which involves cannabinoid receptor 1 (CB1R), in peripheral tissues, including adipose tissue (AT).

The functional consequences of CB1R activation on AT metabolism remain unclear. Since excess fat mobilization is considered an important primary event contributing to the onset of insulin resistance, we combined in vivo and in vitro experiments to investigate whether activation of ECS could alter the lipolytic rate.

For this purpose, the appearance of plasma glycerol was measured in wild-type and CB1R-/- mice after acute anandamide administration or inhibition of endocannabinoid degradation by JZL195. Additional experiments were conducted on rat AT explants to evaluate the direct consequences of ECS activation on glycerol release and signaling pathways.

Treatments stimulated glycerol release in mice fasted for 6 h and injected with glucose but not in 24-h fasted mice or in CB1R-/-suggesting that the effect was dependent on plasma insulin levels and mediated by CB1R. We concomitantly observed that Akt cascade activity was decreased, indicating an alteration of the anti-lipolytic action of insulin.

Similar results were obtained with tissue explants exposed to anandamide, thus identifying CB1R of AT as a major target.

This study indicates the existence of a functional interaction between CB1R and lipolysis regulation in AT. Further investigation is needed to test whether the elevation of ECS tone encountered in obesity is associated with excess fat mobilization contributing to ectopic fat deposition and related metabolic disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/28325733

Rimonabant, a selective cannabinoid1 receptor antagonist, protects against light-induced retinal degeneration in vitro and in vivo.

Image result for Eur J Pharmacol.

“The endocannabinoid system is involved in some neurodegenerative diseases such as Alzheimer’s disease. An endogenous constellation of proteins related to cannabinoid1 receptor signaling, including free fatty acids, diacylglycerol lipase, and N-acylethanolamine-hydrolyzing acid amidase, are localized in the murine retina. Moreover, the expression levels of endogenous agonists of cannabinoid receptors are changed in the vitreous fluid.

However, the role of the endocannabinoid system in the retina, particularly in the light-induced photoreceptor degeneration, remains unknown. Therefore, we investigated involvement of the cannabinoid1 receptor in light-induced retinal degeneration using in vitro and in vivo models.

Rimonabant suppressed light-induced photoreceptor cell death. Cannabinoid1 receptor expression was upregulated by light exposure. Treatment with rimonabant improved both a- and b-wave amplitudes and the thickness of the outer nuclear layer.

These results suggest that the cannabinoid1 receptor is involved in light-induced retinal degeneration and it may represent a therapeutic target in the light-induced photoreceptor degeneration related diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/28315677

Cannabidiol Affects MK-801-Induced Changes in the PPI Learned Response of Capuchin Monkeys (Sapajus spp.).

Image result for Front Pharmacol.

“There are several lines of evidence indicating a possible therapeutic action of cannabidiol (CBD) in schizophrenia treatment.

Studies with rodents have demonstrated that CBD reverses MK-801 effects in prepulse inhibition (PPI) disruption, which may indicate that CBD acts by improving sensorimotor gating deficits.

In the present study, we investigated the effects of CBD on a PPI learned response of capuchin monkeys (Sapajus spp.).

A total of seven monkeys were employed in this study. In Experiment 1, we evaluated the CBD (doses of 15, 30, 60 mg/kg, i.p.) effects on PPI. In Experiment 2, the effects of sub-chronic MK-801 (0.02 mg/kg, i.m.) on PPI were challenged by a CBD pre-treatment.

No changes in PPI response were observed after CBD-alone administration. However, MK-801 increased the PPI response of our animals.

CBD pre-treatment blocked the PPI increase induced by MK-801.

Our findings suggest that CBD’s reversal of the MK-801 effects on PPI is unlikely to stem from a direct involvement on sensorimotor mechanisms, but may possibly reflect its anxiolytic properties.”

A Systematic Review and Meta-Analysis of the Haemodynamic Effects of Cannabidiol

Image result for frontiers pharmacology

“Cannabidiol (CBD) is the second most abundant phytocannabinoid, after Δ9-tetrahydrocannabinol (THC) and was first isolated from the cannabis extract in 1940.

Given the increasing clinical use of CBD, and the numerous effects of CBD in the cardiovascular system, the aim of the present study was to systematically review and analyse in vivo studies evaluating the effects of CBD on alterations in haemodynamics.

From the limited data available, we conclude that acute and chronic administration of CBD had no effect on BP or HR under control conditions, but reduces BP and HR in stressful conditions, and increases cerebral blood flow (CBF) in mouse models of stroke.

This meta-analysis and systematic review has highlighted the haemodynamic effects of CBD administration in vivo.

The positive effects induced by CBD include maintaining the fall in BP after global hypoxia, reducing the increase in MBP and HR post-stress, and increasing BF in ischaemia-reperfusion models.

It is possible that beneficial effects of CBD on haemodynamics occurs when the cardiovascular system is abnormally altered, suggesting that CBD may be used as a treatment for various cardiovascular disorders, such as hypertension, myocardial infarction and stroke.”

http://journal.frontiersin.org/article/10.3389/fphar.2017.00081/full

Cannabis for Pain and Headaches: Primer.

Image result for Curr Pain Headache Rep.

“Marijuana has been used both medicinally and recreationally since ancient times and interest in its compounds for pain relief has increased in recent years. The identification of our own intrinsic, endocannabinoid system has laid the foundation for further research.

Synthetic cannabinoids are being developed and synthesized from the marijuana plant such as dronabinol and nabilone. The US Food and Drug Administration approved the use of dronabinol and nabilone for chemotherapy-associated nausea and vomiting and HIV (Human Immunodeficiency Virus) wasting. Nabiximols is a cannabis extract that is approved for the treatment of spasticity and intractable pain in Canada and the UK. Further clinical trials are studying the effect of marijuana extracts for seizure disorders.

Phytocannabinoids have been identified as key compounds involved in analgesia and anti-inflammatory effects.  Other compounds found in cannabis such as flavonoids and terpenes are also being investigated as to their individual or synergistic effects.

This article will review relevant literature regarding medical use of marijuana and cannabinoid pharmaceuticals with an emphasis on pain and headaches.”

https://www.ncbi.nlm.nih.gov/pubmed/28281107

Cannabinoids therapeutic use: what is our current understanding following the introduction of THC, THC:CBD oromucosal spray and others?

 

Image result for Expert Rev Clin Pharmacol

“The complexity of the endocannabinoid (eCB) system is becoming better understood and new drivers of eCB signaling are emerging. Modulation of the activities of the eCB system can be therapeutic in a number of diseases.

Research into the eCB system has been paralleled by the development of agents that interact with cannabinoid receptors. In this regard it should be remembered that herbal cannabis contains a myriad of active ingredients, and the individual cannabinoids have quite distinct biological activities requiring independent studies.

This article reviews the most important current data involving the eCB system in relation to human diseases, to reflect the present (based mainly on the most used prescription cannabinoid medicine, THC/CBD oromucosal spray) and potential future uses of cannabinoid-based therapy.

Expert commentary: From the different therapeutic possibilities, THC/CBD oromucosal spray has been in clinical use for approximately five years in numerous countries world-wide for the management of multiple sclerosis (MS)-related moderate to severe resistant spasticity.

Clinical trials have confirmed its efficacy and tolerability.

Other diseases in which different cannabinoids are currently being investigated include various pain states, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and epilepsy. The continued characterization of individual cannabinoids in different diseases remains important.”

https://www.ncbi.nlm.nih.gov/pubmed/28276775

Emerging therapeutic targets in cancer induced bone disease: A focus on the peripheral type 2 cannabinoid receptor.

Image result for Pharmacological Research journal

“Skeletal complications are a common cause of morbidity in patients with primary bone cancer and bone metastases. The type 2 cannabinoid (Cnr2) receptor is implicated in cancer, bone metabolism and pain perception. Emerging data have uncovered the role of Cnr2 in the regulation of tumour-bone cell interactions and suggest that agents that target Cnr2 in the skeleton have potential efficacy in the reduction of skeletal complications associated with cancer.

This review aims to provide an overview of findings relating to the role of Cnr2 receptor in the regulation of skeletal tumour growth, osteolysis and bone pain, and highlights the many unanswered questions and unmet needs.

This review argues that development and testing of peripherally-acting, tumour-, Cnr2-selective ligands in preclinical models of metastatic cancer will pave the way for future research that will advance our knowledge about the basic mechanism(s) by which the endocannabinoid system regulate cancer metastasis, stimulate the development of a safer cannabis-based therapy for the treatment of cancer and provide policy makers with powerful tools to assess the science and therapeutic potential of cannabinoid-based therapy.

Thus, offering the prospect of identifying selective Cnr2 ligands, as novel, alternative to cannabis herbal extracts for the treatment of advanced cancer patients.”

https://www.ncbi.nlm.nih.gov/pubmed/28274851

Cannabinoid signaling in health and disease.

Image result for Canadian Journal of Physiology and Pharmacology

“Cannabis sativa has long been used for medicinal purposes.

To improve safety and efficacy, compounds from C. sativa were purified or synthesized and named under an umbrella group as cannabinoids.

Currently, several cannabinoids may be prescribed in Canada for a variety of indications such as nausea and pain.

More recently, an increasing number of reports suggest other salutary effects associated with endogenous cannabinoid signaling including cardioprotection.

The therapeutic potential of cannabinoids is therefore extended; however, evidence is limited and mechanisms remain unclear.

In addition, the use of cannabinoids clinically has been hindered due to pronounced psychoactive side effects.

This review provides an overview on the endocannabinoid system, including known physiological roles, and conditions in which cannabinoid receptor signaling has been implicated.”

Endocannabinoids: A Promising Impact for Traumatic Brain Injury.

 

Image result for Front Pharmacol

“The endogenous cannabinoid (endocannabinoid) system regulates a diverse array of physiological processes and unsurprisingly possesses considerable potential targets for the potential treatment of numerous disease states, including two receptors (i.e., CB1 and CB2 receptors) and enzymes regulating their endogenous ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonyl glycerol (2-AG).

Increases in brain levels of endocannabinoids to pathogenic events suggest this system plays a role in compensatory repair mechanisms.

Traumatic brain injury (TBI) pathology remains mostly refractory to currently available drugs, perhaps due to its heterogeneous nature in etiology, clinical presentation, and severity. Here, we review pre-clinical studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system to ameliorate TBI pathology.

Specifically, manipulations of endocannabinoid degradative enzymes (e.g., fatty acid amide hydrolase, monoacylglycerol lipase, and α/β-hydrolase domain-6), CB1and CB2 receptors, and their endogenous ligands have shown promise in modulating cellular and molecular hallmarks of TBI pathology such as; cell death, excitotoxicity, neuroinflammation, cerebrovascular breakdown, and cell structure and remodeling.

TBI-induced behavioral deficits, such as learning and memory, neurological motor impairments, post-traumatic convulsions or seizures, and anxiety also respond to manipulations of the endocannabinoid system.

As such, the endocannabinoid system possesses potential drugable receptor and enzyme targets for the treatment of diverse TBI pathology.

Yet, full characterization of TBI-induced changes in endocannabinoid ligands, enzymes, and receptor populations will be important to understand that role this system plays in TBI pathology.

Promising classes of compounds, such as the plant-derived phytocannabinoids, synthetic cannabinoids, and endocannabinoids, as well as their non-cannabinoid receptor targets, such as TRPV1 receptors, represent important areas of basic research and potential therapeutic interest to treat TBI.”