Cannabimovone, a Cannabinoid with a Rearranged Terpenoid Skeleton from Hemp

“An investigation of the polar fractions from a nonpsychotropic variety of hemp (Cannabis sativa L.) afforded cannabimovone, a polar cannabinoid with a rearranged 2(34) abeo-terpenoid skeleton, biogenetically originating from the intramolecular aldolization of a 2′,3′-seco-menthanyl precursor.

The structure of cannabimovone was elucidated by spectroscopic analysis, whereas attempts to mimic its biogenetic derivation from cannabidiol gave only anhydrocannabimovone, the intramolecular oxy-Michael adduct of the crotonized version of the elusive natural products.

Biological evaluation of cannabimovone against metabotropic (CB1, CB2) and ionotropic (TRPs) cannabinoid receptors showed a significant activity only for ionotropic receptors, especially TRPV1, whereas anhydrocannabimovone exhibited strong activity at both ionotropic and metabotropic cannabinoid receptors.

Overall, the biological profile of anhydrocannabimovone was somewhat similar to that of THC, suggesting a remarkable tolerance to constitutional and configurational changes.”

http://onlinelibrary.wiley.com/doi/10.1002/ejoc.200901464/abstract

[Cannabinoid WIN55, 212-2 inhibits proliferation, invasion and migration of human SMMC-7721 hepatocellular carcinoma cells].

“Objective To investigate the effects of WIN55, 212-2 (WIN) on the proliferation, invasion and migration of SMMC-7721 hepatocellular carcinoma cells and its underlying mechanisms. Methods SMMC-7721 cells were treated with (0, 1, 5, 10, 20) μmol/L WIN, and cell viability was determined by CCK-8 assay. The morphological changes of the cells were observed under a fluorescence microscope with Hoechst33258 staining. Cell apoptosis was measured by flow cytometry combined with annexin V-FITC/PI staining. The expression levels of apoptosis-related proteins P53, P21, Bcl-2 and Bax, and the phosphorylated AKT (p-AKT) and phosphorylated extracellular signal-regulated kinase (p-ERK) were analyzed by Western blotting. Transwell(TM) invasion assay was used to detect cell invasion ability. Would healing assay was performed to test cell migration ability. The expression level of matrix metalloproteinase 14 (MMP-14) was evaluated by Western blotting. Results WIN inhibited the proliferation of SMMC-7721 cells and induced cell apoptosis in a dose-dependent manner. After treatment with WIN, the cell nucleus concentrated and broken, indicating obvious cell apoptosis. Western blotting exhibited an up-regulation in the protein expression of P53, P21 and Bax. And the anti-apoptotic protein Bcl-2 was repressed. The expression levels of AKT, p-AKT and p-ERK were down-regulated, whereas the expression of total ERK was not obviously changed. Compared with control group, there was a significant inhibition of cell invasion and migration abilities when SMMC-7721 cells were treated with WIN. The expression level of MMP-14 decreased as well. Conclusion WIN can inhibit the proliferation of SMMC-7721 cells and induce cell apoptosis. The mechanism is associated with the activation of P53 and the inhibition of AKT, p-AKT and p-ERK. WIN can inhibit the invasion and migration of SMMC-7721 cells through down-regulating the protein expression of MMP-14.”

http://www.ncbi.nlm.nih.gov/pubmed/27126940

Endocannabinoids signaling: Molecular mechanisms of liver regulation and diseases.

“The endocannabinoid system (ECS) includes endocannabinoids (eCBs), cannabinoid (CB) receptors and the enzymes that are responsible for endocannabinoid production and metabolism. The ECS has been reported to be present in both brain and peripheral tissues.

Recent studies have indicated that eCBs and their receptors are involved in the development of various liver diseases. They were found to be altered in response to many danger factors.

It is generally accepted that eCB may exert a protective action via CB2 receptors in different liver diseases. However, eCBs have also been demonstrated to have pathogenic role via their CB1 receptors.

Although the therapeutic potential of CB1 receptor blockade in liver diseases is limited by its neuropsychiatric side effects, many studies have been conducted to search for novel, peripherally restricted CB1 antagonists or CB2 agonists, which may minimize their neuropsychiatric side effects in clinical use.

This review summarizes the current understanding of the ECS in liver diseases and provides evidence for the potential to develop new therapeutic strategies for the treatment of these liver diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27100518

Anandamide and its metabolites: what are their roles in the kidney?

 “Anandamide (AEA) is the N-acyl ethanolamide of arachidonic acid, an agonist of cannabinoid and non-cannabinoid receptors in the body. The kidneys are enriched in AEA and in enzymes that metabolize AEA, but the roles of AEA and its metabolites in the kidney remain poorly understood.

This system likely is involved in the regulation of renal blood flow and hemodynamics and of tubular sodium and fluid reabsorption. It may act as a neuromodulator of the renal sympathetic nervous system. AEA and its cyclooxygenase-2 metabolites, the prostamides, in the renal medulla may represent a unique antihypertensive system involved in the long-term control of blood pressure. AEA and its metabolites are also implicated as modulators of inflammation and mediators of signaling in inflammation.

AEA and its metabolites may be influential in chronic kidney disease states associated with inflammation and cardiovascular diseases associated with hyperhomocysteinemia. The current knowledge of the roles of AEA and its derivatives highlights the need for further research to define and potentially exploit the role of this endocannabinoid system in the kidney.”

http://www.ncbi.nlm.nih.gov/pubmed/27100705

Discovery of KLS-13019, a Cannabidiol-Derived Neuroprotective Agent, with Improved Potency, Safety, and Permeability.

“Cannabidiol is the nonpsychoactive natural component of C. sativa that has been shown to be neuroprotective in multiple animal models.

Our interest is to advance a therapeutic candidate for the orphan indication hepatic encephalopathy (HE). HE is a serious neurological disorder that occurs in patients with cirrhosis or liver failure.

Although cannabidiol is effective in models of HE, it has limitations in terms of safety and oral bioavailability.

Herein, we describe a series of side chain modified resorcinols that were designed for greater hydrophilicity and “drug likeness”, while varying hydrogen bond donors, acceptors, architecture, basicity, neutrality, acidity, and polar surface area within the pendent group.

Our primary screen evaluated the ability of the test agents to prevent damage to hippocampal neurons induced by ammonium acetate and ethanol at clinically relevant concentrations.

Notably, KLS-13019 was 50-fold more potent and >400-fold safer than cannabidiol and exhibited an in vitro profile consistent with improved oral bioavailability.”

http://www.ncbi.nlm.nih.gov/pubmed/27096053

Suppression of invasion and metastasis in aggressive salivary cancer cells through targeted inhibition of ID1 gene expression.

Image result for Cancer Lett.

“Salivary gland cancer (SGC) represents the most common malignancy in the head and neck region, and often metastasizes to the lungs. The helix-loop-helix ID1 protein has been shown to control metastatic progression in many types of cancers.

Using two different approaches to target the expression of ID1 (genetic knockdown and progesterone receptor introduction combined with progesterone treatment), we previously determined that the aggressiveness of salivary gland tumor ACCM cells in culture was suppressed. Here, using the same approaches to target ID1 expression, we investigated the ability of ACCM cells to generate lung metastatic foci in nude mice.

Moreover, since both approaches would be challenging for applications in humans, we added a third approach, i.e., treatment of mice with a non-toxic cannabinoid compound known to down-regulate ID1 gene expression.

All approaches aimed at targeting the pro-metastatic ID1 gene led to a significant reduction in the formation of lung metastatic foci.

Therefore, targeting a key transcriptional regulator using different means results in the same reduction of the metastatic spread of SGC cells in animal models, suggesting a novel approach for the treatment of patients with aggressive SGC.”

http://www.ncbi.nlm.nih.gov/pubmed/27087608

“Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells… CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells…  Moreover, reducing Id-1 expression with cannabinoids could also provide a therapeutic strategy for the treatment of additional aggressive cancers because Id-1 expression was found to be up-regulated during the progression of almost all types…”  http://mct.aacrjournals.org/content/6/11/2921.long

http://www.thctotalhealthcare.com/tag/id-1/

The multiplicity of action of cannabinoids: implications for treating neurodegeneration.

“The cannabinoid (CB) system is widespread in the central nervous system and is crucial for controlling a range of neurophysiological processes such as pain, appetite, and cognition. The endogenous CB molecules, anandamide, and 2-arachidonoyl glycerol, interact with the G-protein coupled CB receptors, CB(1) and CB(2).

These receptors are also targets for the phytocannabinoids isolated from the cannabis plant and synthetic CB receptor ligands.

The CB system is emerging as a key regulator of neuronal cell fate and is capable of conferring neuroprotection by the direct engagement of prosurvival pathways and the control of neurogenesis.

Many neurological conditions feature a neurodegenerative component that is associated with excitotoxicity, oxidative stress, and neuroinflammation, and certain CB molecules have been demonstrated to inhibit these events to halt the progression of neurodegeneration.

Such properties are attractive in the development of new strategies to treat neurodegenerative conditions of diverse etiology, such as Alzheimer’s disease, multiple sclerosis, and cerebral ischemia.

This article will discuss the experimental and clinical evidence supporting a potential role for CB-based therapies in the treatment of certain neurological diseases that feature a neurodegenerative component.”

http://www.ncbi.nlm.nih.gov/pubmed/20875047

Cannabinoid WIN‑55,212‑2 mesylate inhibits ADAMTS‑4 activity in human osteoarthritic articular chondrocytes by inhibiting expression of syndecan‑1.

“A central feature of osteoarthritis (OA) is the loss of articular cartilage, which is primarily attributed to cartilage breakdown.

Accumulating evidence also suggests that cannabinoids have chondroprotective effects.

In conclusion, to the best of our knowledge, the present study provides the first in vitro evidence supporting that the synthetic cannabinoid WIN‑55 inhibits ADAMTS‑4 activity in unstimulated and IL‑1β‑stimulated human OA articular chondrocytes by decreasing the mRNA stability/expression of syndecan‑1 via CB2.

This suggests a novel mechanism by which cannabinoids may prevent cartilage breakdown in OA.

In addition, it also provides novel insights into the pharmacological effects of synthetic cannabinoids on OA.” http://www.ncbi.nlm.nih.gov/pubmed/27082728

“Chondroprotective: A specific compound or chemical that delays progressive joint space narrowing characteristic of arthritis and improvesthe biomechanics of articular joints by protecting chondrocytes.”   http://medical-dictionary.thefreedictionary.com/chondroprotective

Toll-like receptor signalling as a cannabinoid target in Multiple Sclerosis.

“Toll-like receptors (TLRs) are the sensors of pathogen-associated molecules that trigger tailored innate immune intracellular signalling responses to initiate innate immune reactions.

Data from the experimental autoimmune encephalomyelitis (EAE) model indicates that TLR signalling machinery is a pivotal player in the development of murine EAE. To compound this, data from human studies indicate that complex interplay exists between TLR signalling and Multiple Sclerosis (MS) pathogenesis.

Cannabis-based therapies are in clinical development for the management of a variety of medical conditions, including MS. In particular Sativex®, a combination of plant-derived cannabinoids, is an oromucosal spray with efficacy in MS patients, particularly those with neuropathic pain and spasticity.

Despite this, the precise cellular and molecular mechanisms of action of Sativex® in MS patients remains unclear. This review will highlight evidence that novel interplay exists between the TLR and cannabinoid systems, both centrally and peripherally, with relevance to the pathogenesis of MS.”

http://www.ncbi.nlm.nih.gov/pubmed/27079840

Cannabidiol promotes browning in 3T3-L1 adipocytes.

“Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity.

The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes.

These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis.

In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism.

Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.”

http://www.ncbi.nlm.nih.gov/pubmed/27067870

http://www.thctotalhealthcare.com/category/obesity-2/