A pediatric patient with autism spectrum disorder and epilepsy using cannabinoid extracts as complementary therapy: a case report

 Journal of Medical Case Reports | Home page“The pharmacological treatment for autism spectrum disorders is often poorly tolerated and has traditionally targeted associated conditions, with limited benefit for the core social deficits.

We describe the novel use of a cannabidiol-based extract that incidentally improved core social deficits and overall functioning in a patient with autism spectrum disorder, at a lower dose than has been previously reported in autism spectrum disorder.

Case presentation: The parents of a 15-year-old boy, of South African descent, with autism spectrum disorder, selective mutism, anxiety, and controlled epilepsy, consulted a medical cannabis physician to trial cannabis extract to replace seizure medications. Incidentally, at a very low cannabidiol-based extract dose, he experienced unanticipated positive effects on behavioral symptoms and core social deficits.

Conclusion: This case report provides evidence that a lower than previously reported dose of a phytocannabinoid in the form of a cannabidiol-based extract may be capable of aiding in autism spectrum disorder-related behavioral symptoms, core social communication abilities, and comorbid anxiety, sleep difficulties, and weight control. Further research is needed to elucidate the clinical role and underlying biological mechanisms of action of cannabidiol-based extract in patients with autism spectrum disorder.”

https://pubmed.ncbi.nlm.nih.gov/32958062/

https://jmedicalcasereports.biomedcentral.com/articles/10.1186/s13256-020-02478-7

Medicinal Cannabis and Synthetic Cannabinoid Use

medicina-logo“Cannabis products have been used for centuries by humans for recreational and medical purposes. Resent research, proposed the promising therapeutic potential of cannabis and related cannabinoids for a wide range of medical conditions, including psychiatric and neurological diseases.

This Special Issue presents the latest updates on medicinal cannabis and synthetic cannabinoids pharmacology, toxicology and new analytical methods to identify and quantify these compounds in conventional and non-conventional biological matrices. Moreover, it provides current data regarding their adverse effects, safety, application for medical purposes and their harmful effects.”

https://pubmed.ncbi.nlm.nih.gov/32906770/

https://www.mdpi.com/1010-660X/56/9/453

It Is Our Turn to Get Cannabis High: Put Cannabinoids in Food and Health Baskets

molecules-logo“Cannabis is an annual plant with a long history of use as food, feed, fiber, oil, medicine, and narcotics. Despite realizing its true value, it has not yet found its true place. Cannabis has had a long history with many ups and downs, and now it is our turn to promote it.

Cannabis contains approximately 600 identified and many yet unidentified potentially useful compounds. Cannabinoids, phenolic compounds, terpenoids, and alkaloids are some of the secondary metabolites present in cannabis. However, among a plethora of unique chemical compounds found in this plant, the most important ones are phytocannabinoids (PCs).

Over hundreds of 21-22-carbon compounds exclusively produce in cannabis glandular hairs through either polyketide and or deoxyxylulose phosphate/methylerythritol phosphate (DOXP/MEP) pathways. Trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are those that first come to mind while talking about cannabis. Nevertheless, despite the low concentration, cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabinodiol (CBND), and cannabinidiol (CBDL) may have potentially some medical effects.

PCs and endocannabinoids (ECs) mediate their effects mainly through CB1 and CB2 receptors. Despite all concerns regarding cannabis, nobody can ignore the use of cannabinoids as promising tonic, analgesic, antipyretic, antiemetic, anti-inflammatory, anti-epileptic, anticancer agents, which are effective for pain relief, depression, anxiety, sleep disorders, nausea and vomiting, multiple sclerosis, cardiovascular disorders, and appetite stimulation.

The scientific community and public society have now increasingly accepted cannabis specifically hemp as much more than a recreational drug. There are growing demands for cannabinoids, mainly CBD, with many diverse therapeutic and nutritional properties in veterinary or human medicine. The main objective of this review article is to historically summarize findings concerning cannabinoids, mainly THC and CBD, towards putting these valuable compounds into food, feed and health baskets and current and future trends in the consumption of products derived from cannabis.”

https://pubmed.ncbi.nlm.nih.gov/32899626/

https://www.mdpi.com/1420-3049/25/18/4036

Autism Spectrum Disorder and Medical Cannabis: Review and Clinical Experience

Seminars in Pediatric Neurology “Autism spectrum disorder (ASD) is a multifactorial, pervasive neurodevelopmental disorder defined by the core symptoms of significant impairment in social interaction and communication as well as restricted, repetitive patterns of behavior. In addition to these core behaviors, persons with ASD frequently have associated noncore behavioral disturbance (ie, self-injury, aggression), as well as several medical comorbidities. Currently, no effective treatment exists for the core symptoms of ASD.

This review reports the available preclinical and clinical data regarding the use of cannabis and cannabidiol in the treatment of core symptoms, noncore symptoms and comorbidities associated with ASD. Additionally, we describe our clinical experience working with children and young adults with ASD who have used cannabis or cannabidiol.

At present, preclinical and clinical data suggest a potential for therapeutic benefit among some persons with ASD and that it is overall well tolerated.

Further research is required to better identify patients who may benefit from treatment without adverse effects.”

https://pubmed.ncbi.nlm.nih.gov/32892960/

https://www.sciencedirect.com/science/article/abs/pii/S1071909120300449?via%3Dihub

The pharmacokinetics, efficacy, and safety of a novel selective‐dose cannabis inhaler in patients with chronic pain: A randomized, double‐blinded, placebo‐controlled trial

European Journal of Pain“Precise cannabis treatment dosing remains a major challenge, leading to physicians’ reluctance to prescribe medical cannabis.

Objective

To test the pharmacokinetics, analgesic effect, cognitive performance and safety effects of an innovative medical device that enables the delivery of inhaled therapeutic doses of Δ9‐Tetrahydrocannabinol (THC) in patients with chronic pain.

Methods

In a randomized, three‐arms, double‐blinded, placebo‐controlled, cross‐over trial, 27 patients received a single inhalation of Δ9‐THC: 0.5mg, 1mg, or a placebo.

Δ9‐THC plasma levels were measured at baseline and up to 150‐min post‐inhalation. Pain intensity and safety parameters were recorded on a 10‐cm visual analogue scale (VAS) at pre‐defined time points. The cognitive performance was evaluated using the selective sub‐tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB).

Results

Following inhalation of 0.5 mg or 1mg, Δ9‐THC plasma max ± SD were 14.3 ± 7.7 and 33.8 ± 25.7 ng/ml. max ± SD were 3.7 ± 1.4 and 4.4 ± 2.1 min, and AUC0 → infinity±SD were 300 ± 144 and 769 ± 331 ng*min/ml, respectively. Both doses, but not the placebo, demonstrated a significant reduction in pain intensity compared with baseline and remained stable for 150‐min. The 1‐mg dose showed a significant pain decrease compared to the placebo. Adverse events were mostly mild and resolved spontaneously. There was no evidence of consistent impairments in cognitive performance.

Conclusion

This feasibility trial demonstrated that a metered‐dose cannabis inhaler delivered precise and low THC doses, produced a dose‐dependent and safe analgesic effect in patients with neuropathic pain/ complex‐regional pain syndrome (CRPS). Thus, it enables individualization of medical cannabis regimens that can be evaluated pharmacokinetically and pharmacodynamically by accepted pharmaceutical models.

Significance

Evidence suggests that cannabis‐based medicines are an effective treatment for chronic pain in adults. The pharmacokinetics of THC varies as a function of its route of administration. Pulmonary assimilation of inhaled THC causes rapid onset of analgesia. However, currently used routes of cannabinoids delivery provide unknown doses, making it impossible to implement a pharmaceutical standard treatment plan. A novel selective‐dose cannabis inhaler delivers significantly low and precise doses of THC, thus allowing the administration of inhaled cannabis‐based medicines according to high pharmaceutical standards. These low doses of THC can produce safe and effective analgesia in patients with chronic pain.

To the best of our knowledge, it is the first time that the delivery of selective, significantly low, and precise therapeutic single doses of inhaled THC demonstrates an analgesic effect. It allows patients to reach the optimum balance between symptom relief and controlled side effects, enabling patients to regain their quality of life. In addition, this metered‐dose cannabis inhaler enables the individualization of medical cannabis regimens that can be evaluated pharmacokinetically and pharmacodynamically using accepted pharmaceutical models.”

https://onlinelibrary.wiley.com/doi/10.1002/ejp.1605

Study Finds Microdosing THC Reduces Pain Levels”  https://www.painnewsnetwork.org/stories/2020/7/1/study-finds-microdosing-thc-reduces-pain-levels

Medical Cannabis for the Management of Pain and Quality of Life in Chronic Pain Patients: A Prospective Observational Study

Pain Medicine (Journal) by Oxford University Press

“Objective: To evaluate the short-term and long-term effects of plant-based medical cannabis in a chronic pain population over the course of one year.

Results: Medical cannabis treatment was associated with improvements in pain severity and interference (P < 0.001) observed at one month and maintained over the 12-month observation period. Significant improvements were also observed in the SF-12 physical and mental health domains (P < 0.002) starting at three months. Significant decreases in headaches, fatigue, anxiety, and nausea were observed after initiation of treatment (P ≤ 0.002). In patients who reported opioid medication use at baseline, there were significant reductions in oral morphine equivalent doses (P < 0.0001), while correlates of pain were significantly improved by the end of the study observation period.

Conclusions: Taken together, the findings of this study add to the cumulative evidence in support of plant-based medical cannabis as a safe and effective treatment option and potential opioid medication substitute or augmentation therapy for the management of symptoms and quality of life in chronic pain patients.”

https://pubmed.ncbi.nlm.nih.gov/32556203/

https://academic.oup.com/painmedicine/article-abstract/doi/10.1093/pm/pnaa163/5859722?redirectedFrom=fulltext

Antiemetic Effects of Cannabinoid Agonists in Nonhuman Primates

Journal of Pharmacology and Experimental Therapeutics“Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge.

Although cannabinergic medications have been used in certain treatment-resistant populations, FDA-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications.

The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg), against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys.

These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggests that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side-effect liability.

SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved anti-emetic pharmacotherapies has been impeded by a paucity of animal models.

The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid-analog methanandamide in nonhuman primates.”

https://pubmed.ncbi.nlm.nih.gov/32561684/

http://jpet.aspetjournals.org/content/early/2020/06/19/jpet.120.265710

Experiences With Medical Cannabis in the Treatment of Veterans With PTSD: Results From a Focus Group Discussion

 European Neuropsychopharmacology“Posttraumatic stress disorder (PTSD) is an often chronic condition for which currently available medications have limited efficacy.

Medical cannabis is increasingly used to treat patients with PTSD; however, evidence for the efficacy and safety of cannabinoids is scarce. To learn more about patients’ opinions on and experiences with medical cannabis, we organized a focus group discussion among military veterans (N = 7) with chronic PTSD who were treated with medical cannabis. Afterwards, some of their partners (N = 4) joined the group for an evaluation, during which they shared their perspective on their partner’s use of medical cannabis.

Both sessions were audio-recorded, transcribed verbatim, and analyzed by means of qualitative content analysis. Five overarching themes were identified. The first four themes related to the different phases of medical cannabis use – namely, 1) Consideration; 2) Initiation; 3) Usage; and 4) Discontinuation. The fifth theme related to several general aspects of medical cannabis use.

Patients used medical cannabis to manage their symptoms and did not experience an urge to “get high.” They used a variety of different cannabis strains and dosages and reported several therapeutic effects, including an increased quality of sleep. Furthermore, discussions about the experienced stigma surrounding cannabis generated insights with implications for the initiation of medical cannabis use.

These results underscore the value of qualitative research in this field and are relevant for the design of future clinical trials on the use of medical cannabis for the treatment of PTSD.”

https://pubmed.ncbi.nlm.nih.gov/32576481/

“Reported therapeutic effects ranged from reduced anger and irritability to increased sleep quality and reductions in nightmares and night sweats.”

https://www.sciencedirect.com/science/article/pii/S0924977X20301280?via%3Dihub

Current Application of Cannabidiol (CBD) in the Management and Treatment of Neurological Disorders

SpringerLink“Cannabidiol (CBD), which is nonintoxicating pharmacologically relevant constituents of Cannabis, demonstrates several beneficial effects. It has been found to have antioxidative, anti-inflammatory, and neuroprotective effects. As the medicinal use of CBD is gaining popularity for treatment of various disorders, the recent flare-up of largely unproven and unregulated cannabis-based preparations on medical therapeutics may have its greatest impact in the field of neurology. Currently, as lot of clinical trials are underway, CBD demonstrates remarkable potential to become a supplemental therapy in various neurological conditions. It has shown promise in the treatment of neurological disorders such as anxiety, chronic pain, trigeminal neuralgia, epilepsy, and essential tremors as well as psychiatric disorders. While recent FDA-approved prescription drugs have demonstrated safety, efficacy, and consistency enough for regulatory approval in spasticity in multiple sclerosis (MS) and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges still remain. In the current review, the authors have shed light on the application of CBD in the management and treatment of various neurological disorders.”

https://pubmed.ncbi.nlm.nih.gov/32556748/

https://link.springer.com/article/10.1007%2Fs10072-020-04514-2

Migraine Frequency Decrease Following Prolonged Medical Cannabis Treatment: A Cross-Sectional Study

brainsci-logo“Medical cannabis (MC) treatment for migraine is practically emerging, although sufficient clinical data are not available for this indication. This cross-sectional questionnaire-based study aimed to investigate the associations between phytocannabinoid treatment and migraine frequency.

Compared to non-responders, responders (n = 89, 61%) reported lower current migraine disability and lower negative impact, and lower rates of opioid and triptan consumption. Subgroup analysis demonstrated that responders consumed higher doses of the phytocannabinoid ms_373_15c and lower doses of the phytocannabinoid ms_331_18d (3.40 95% CI (1.10 to 12.00); p < 0.01 and 0.22 95% CI (0.05-0.72); p < 0.05, respectively).

Conclusions: These findings indicate that MC results in long-term reduction of migraine frequency in >60% of treated patients and is associated with less disability and lower antimigraine medication intake. They also point to the MC composition, which may be potentially efficacious in migraine patients.”

https://pubmed.ncbi.nlm.nih.gov/32526965/

https://www.mdpi.com/2076-3425/10/6/360